Skip to main content

SLISEMAP: Combine local explanations with supervised dimensionality reduction

Project description

SLISEMAP: Combine supervised dimensionality reduction with local explanations

SLISEMAP is a supervised dimensionality reduction method, that takes data, in the form of vectors, and predictions from a black box regression or classification model as input. SLISEMAP then simultaneously finds local explanations for all data items and builds a (typically) two-dimensional global visualisation of the black box model such that data items with similar local explanations are projected nearby. The explanations consists of white box models that locally approximate the black box model.

SLISEMAP is implemented in Python using PyTorch for efficient optimisation, and optional GPU-acceleration. For more information see the full paper, the demo paper, the demonstration video (slides), the examples directory, or the documentation.

Citation

Björklund, A., Mäkelä, J. & Puolamäki, K. (2022).
SLISEMAP: Supervised dimensionality reduction through local explanations.
arXiv:2201.04455 [cs], https://arxiv.org/abs/2201.04455.

Installation

To install the package just run:

pip install slisemap

Or install the latest version directly from GitHub:

pip install git+https://github.com/edahelsinki/slisemap

PyTorch

Since SLISEMAP utilises PyTorch for efficient calculations, you might want to install a version that is optimised for your hardware. See https://pytorch.org/get-started/locally for details.

Example

import numpy as np
from slisemap import Slisemap

X = np.array(...)
y = np.array(...)
sm = Slisemap(X, y, radius=3.5, lasso=0.001)
sm.optimise()
sm.plot(clusters=4, bars=5)

Example plot of the results from using SLISEMAP on the Auto MPG dataset

See the examples directory for more detailed examples, and the documentation for more detailed instructions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

slisemap-1.0.1.tar.gz (29.5 kB view details)

Uploaded Source

Built Distribution

slisemap-1.0.1-py3-none-any.whl (31.8 kB view details)

Uploaded Python 3

File details

Details for the file slisemap-1.0.1.tar.gz.

File metadata

  • Download URL: slisemap-1.0.1.tar.gz
  • Upload date:
  • Size: 29.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.13

File hashes

Hashes for slisemap-1.0.1.tar.gz
Algorithm Hash digest
SHA256 c9c866ba17378b77cbe30561661684af70afa40429963e4d59e5cde0ec958666
MD5 e005f6135f01f1976bdacea7d4aa1067
BLAKE2b-256 6e01cbdc38164ecc1ff14838d4f6ca65c570bf1557c83ae9e3c156d687a1c52e

See more details on using hashes here.

File details

Details for the file slisemap-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: slisemap-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 31.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.13

File hashes

Hashes for slisemap-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 fe9db69de167baf8a240aeecb26356accb79f61565cdebeaae6062b269f44d81
MD5 51635805f62b7219dd1deaf1c57791bf
BLAKE2b-256 704367085287ed43ba32f551d4ef53040dced2323cd03853bd5f11fd2975bb77

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page