Skip to main content

SLISEMAP: Combine local explanations with supervised dimensionality reduction

Project description

SLISEMAP: Combine supervised dimensionality reduction with local explanations

SLISEMAP is a supervised dimensionality reduction method, that takes data, in the form of vectors, and predictions from a black box regression or classification model as input. SLISEMAP then simultaneously finds local explanations for all data items and builds a (typically) two-dimensional global visualisation of the black box model such that data items with similar local explanations are projected nearby. The explanations consists of white box models that locally approximate the black box model.

SLISEMAP is implemented in Python using PyTorch for efficient optimisation, and optional GPU-acceleration. For more information see the full paper, the demo paper, the demonstration video (slides), the examples directory, or the documentation.

Citation

Björklund, A., Mäkelä, J. & Puolamäki, K. (2022).
SLISEMAP: Supervised dimensionality reduction through local explanations.
arXiv:2201.04455 [cs], https://arxiv.org/abs/2201.04455.

Installation

To install the package just run:

pip install slisemap

Or install the latest version directly from GitHub:

pip install git+https://github.com/edahelsinki/slisemap

PyTorch

Since SLISEMAP utilises PyTorch for efficient calculations, you might want to install a version that is optimised for your hardware. See https://pytorch.org/get-started/locally for details.

Example

import numpy as np
from slisemap import Slisemap

X = np.array(...)
y = np.array(...)
sm = Slisemap(X, y, radius=3.5, lasso=0.001)
sm.optimise()
sm.plot(clusters=4, bars=5)

Example plot of the results from using SLISEMAP on the Auto MPG dataset

See the examples directory for more detailed examples, and the documentation for more detailed instructions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

slisemap-1.1.0.tar.gz (30.3 kB view details)

Uploaded Source

Built Distribution

slisemap-1.1.0-py3-none-any.whl (32.7 kB view details)

Uploaded Python 3

File details

Details for the file slisemap-1.1.0.tar.gz.

File metadata

  • Download URL: slisemap-1.1.0.tar.gz
  • Upload date:
  • Size: 30.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for slisemap-1.1.0.tar.gz
Algorithm Hash digest
SHA256 f40fca0467592688f4ff5755966e9495e24a9306ca0d1c51aea95d9cb99c585f
MD5 0dc70cd3b780f423b0b7b57dd4745227
BLAKE2b-256 bcd09810b6b5e1242d40e75ba230bc923fb8c3ad4272e43070ec4f2278fdb9d7

See more details on using hashes here.

File details

Details for the file slisemap-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: slisemap-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 32.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for slisemap-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 030288f019c7798f0ebe2b65897ea520f186899fac39a2597644b970616669b9
MD5 fa327d0fb6028858ed88fa2d7c696f37
BLAKE2b-256 0bf88c2a270d828b4fd925eded85450edb60beb2e28ec1cfee6cc24b71c1f329

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page