Skip to main content

SLISEMAP: Combine local explanations with supervised dimensionality reduction

Project description

PyPI Documentation Tests Licence: MIT Code style: black Binder DOI

SLISEMAP: Combine supervised dimensionality reduction with local explanations

SLISEMAP is a supervised dimensionality reduction method, that takes data, in the form of vectors, and predictions from a black box regression or classification model as input. SLISEMAP then simultaneously finds local explanations for all data items and builds a (typically) two-dimensional global visualisation of the black box model such that data items with similar local explanations are projected nearby. The explanations consist of white box models that locally approximate the black box model.

SLISEMAP is implemented in Python using PyTorch for efficient optimisation, and optional GPU-acceleration. For more information see the full paper (arXiv), the demo paper, the demo video (slides), the examples, or the documentation.

Citation

Björklund, A., Mäkelä, J. & Puolamäki, K. (2023).
SLISEMAP: Supervised dimensionality reduction through local explanations.
Machine Learning 112, 1-43. DOI: 10.1007/s10994-022-06261-1

Installation

To install the package just run:

pip install slisemap

Or install the latest version directly from GitHub:

pip install git+https://github.com/edahelsinki/slisemap

PyTorch

Since SLISEMAP utilises PyTorch for efficient calculations, you might want to install a version that is optimised for your hardware. See https://pytorch.org/get-started/locally for details.

Example

import numpy as np
from slisemap import Slisemap

X = np.array(...)
y = np.array(...)
sm = Slisemap(X, y, radius=3.5, lasso=0.01)
sm.optimise()
sm.plot(clusters=5, bars=5)

Example plot of the results from using SLISEMAP on the Auto MPG dataset

See the examples for more detailed examples, and the documentation for more detailed instructions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

slisemap-1.4.0.tar.gz (49.2 kB view details)

Uploaded Source

Built Distribution

slisemap-1.4.0-py3-none-any.whl (45.0 kB view details)

Uploaded Python 3

File details

Details for the file slisemap-1.4.0.tar.gz.

File metadata

  • Download URL: slisemap-1.4.0.tar.gz
  • Upload date:
  • Size: 49.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for slisemap-1.4.0.tar.gz
Algorithm Hash digest
SHA256 69485ec9c14c10a732537ed2e102b59452e4c3576c2d77b46d6f5a0616559e60
MD5 3bfa81a5eba441811b9ba0ac0406850f
BLAKE2b-256 2f3c4d60c5de01717253439e1ec087db1a1bc0055882aa1751991895217e2966

See more details on using hashes here.

File details

Details for the file slisemap-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: slisemap-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 45.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for slisemap-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f2600e571c37e384a9056780c8b7581f80c5a96637289815c312a2977c5b7f15
MD5 0a3c4fe6453d2900dd1fb322bd2ddd7a
BLAKE2b-256 d8962778635398f23ab70640022c65f29e007d145be944781b4e38d944cd14f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page