Skip to main content

SLISEMAP: Combine local explanations with supervised dimensionality reduction

Project description

PyPI Documentation Tests Licence: MIT Code style: black Binder DOI

SLISEMAP: Combine supervised dimensionality reduction with local explanations

SLISEMAP is a supervised dimensionality reduction method, that takes data, in the form of vectors, and predictions from a black box regression or classification model as input. SLISEMAP then simultaneously finds local explanations for all data items and builds a (typically) two-dimensional global visualisation of the black box model such that data items with similar local explanations are projected nearby. The explanations consist of white box models that locally approximate the black box model.

SLISEMAP is implemented in Python using PyTorch for efficient optimisation, and optional GPU-acceleration. For more information see the full paper (arXiv), the demo paper, the demo video (slides), the examples, or the documentation.

Citation

Björklund, A., Mäkelä, J. & Puolamäki, K. (2023).
SLISEMAP: Supervised dimensionality reduction through local explanations.
Machine Learning 112, 1-43. DOI: 10.1007/s10994-022-06261-1

Installation

To install the package just run:

pip install slisemap

Or install the latest version directly from GitHub:

pip install git+https://github.com/edahelsinki/slisemap

PyTorch

Since SLISEMAP utilises PyTorch for efficient calculations, you might want to install a version that is optimised for your hardware. See https://pytorch.org/get-started/locally for details.

Example

import numpy as np
from slisemap import Slisemap

X = np.array(...)
y = np.array(...)
sm = Slisemap(X, y, radius=3.5, lasso=0.01)
sm.optimise()
sm.plot(clusters=5, bars=5)

Example plot of the results from using SLISEMAP on the Auto MPG dataset

See the examples for more detailed examples, and the documentation for more detailed instructions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

slisemap-1.5.1.tar.gz (50.0 kB view details)

Uploaded Source

Built Distribution

slisemap-1.5.1-py3-none-any.whl (45.5 kB view details)

Uploaded Python 3

File details

Details for the file slisemap-1.5.1.tar.gz.

File metadata

  • Download URL: slisemap-1.5.1.tar.gz
  • Upload date:
  • Size: 50.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for slisemap-1.5.1.tar.gz
Algorithm Hash digest
SHA256 eccd75ff7676b61ab997c65ab40d6fd3c2612c927a4ba215390396ad0a078f25
MD5 e572eedafc05d6f1d274c184da303bc0
BLAKE2b-256 3f9fc261e35bea99bd27a7996dceee0b081e757a8b0766d87d6c570f31d21bf6

See more details on using hashes here.

File details

Details for the file slisemap-1.5.1-py3-none-any.whl.

File metadata

  • Download URL: slisemap-1.5.1-py3-none-any.whl
  • Upload date:
  • Size: 45.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for slisemap-1.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 798622ca8d07ede96b0d3a694bcae74800f1b9397fd60a25d26fde36ef5bbce7
MD5 e3159b4591f51b0b377b68315719414a
BLAKE2b-256 dab6606d94703dfa3cf809342f9baea6e9ac337fe30334caaa41f989a9aedd38

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page