Skip to main content

SLISEMAP: Combine local explanations with supervised dimensionality reduction

Project description

PyPI Documentation Tests Licence: MIT Code style: black Binder DOI

SLISEMAP: Combine supervised dimensionality reduction with local explanations

SLISEMAP is a supervised dimensionality reduction method, that takes data, in the form of vectors, and predictions from a black box regression or classification model as input. SLISEMAP then simultaneously finds local explanations for all data items and builds a (typically) two-dimensional global visualisation of the black box model such that data items with similar local explanations are projected nearby. The explanations consist of white box models that locally approximate the black box model.

SLISEMAP is implemented in Python using PyTorch for efficient optimisation, and optional GPU-acceleration. For more information see the full paper (arXiv), the demo paper, the demo video (slides), the examples, or the documentation.

Citation

Björklund, A., Mäkelä, J. & Puolamäki, K. (2023).
SLISEMAP: Supervised dimensionality reduction through local explanations.
Machine Learning 112, 1-43. DOI: 10.1007/s10994-022-06261-1

Installation

To install the package just run:

pip install slisemap

Or install the latest version directly from GitHub:

pip install git+https://github.com/edahelsinki/slisemap

PyTorch

Since SLISEMAP utilises PyTorch for efficient calculations, you might want to install a version that is optimised for your hardware. See https://pytorch.org/get-started/locally for details.

Example

import numpy as np
from slisemap import Slisemap

X = np.array(...)
y = np.array(...)
sm = Slisemap(X, y, radius=3.5, lasso=0.01)
sm.optimise()
sm.plot(clusters=5, bars=5)

Example plot of the results from using SLISEMAP on the Auto MPG dataset

See the examples for more detailed examples, and the documentation for more detailed instructions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

slisemap-1.5.2.tar.gz (50.3 kB view details)

Uploaded Source

Built Distribution

slisemap-1.5.2-py3-none-any.whl (45.7 kB view details)

Uploaded Python 3

File details

Details for the file slisemap-1.5.2.tar.gz.

File metadata

  • Download URL: slisemap-1.5.2.tar.gz
  • Upload date:
  • Size: 50.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for slisemap-1.5.2.tar.gz
Algorithm Hash digest
SHA256 5ec864046042ee60c51a5735f5c6b08bb82eef698682fe4929f4c82da7668ea9
MD5 6606b3c48f498cdca7672f46696694f5
BLAKE2b-256 0c33d8acdb25f802208e520aa732d1a12b414b697689846f3fd568d5eb81332a

See more details on using hashes here.

File details

Details for the file slisemap-1.5.2-py3-none-any.whl.

File metadata

  • Download URL: slisemap-1.5.2-py3-none-any.whl
  • Upload date:
  • Size: 45.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for slisemap-1.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d6346d441763d92df6c1f2b2b4527919d01df772a05e6096d404bffac90421a0
MD5 99cce276121c290cc02670a453ed8293
BLAKE2b-256 6411cf094e8d5b0be0dfd7348a2c5030201616de8afad00aa6c5e37d62ab3399

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page