Skip to main content

Take it slow, compute gradients

Project description

slowgrad

Unit tests

A small neural network library optimized for learning.

Inspired by PyTorch, micrograd, and tinygrad.

Build an MNIST Convnet

from slowgrad.layers import Linear, Conv2d

class TinyConvNetLayer:
  def __init__(self):

    self.c1 = Conv2d(1,8,kernel_size=(3,3))
    self.c2 = Conv2d(8,16,kernel_size=(3,3))
    self.l1 = Linear(16*5*5,10)

  def parameters(self):
    return [*self.l1.get_parameters(), *self.c1.get_parameters(), *self.c2.get_parameters()]

  def forward(self, x):
    x = x.reshape(shape=(-1, 1, 28, 28))
    x = self.c1(x).relu().max_pool2d()
    x = self.c2(x).relu().max_pool2d()
    x = x.reshape(shape=[x.shape[0], -1])
    return self.l1(x).logsoftmax()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

slowgrad-0.2.0.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

slowgrad-0.2.0-py3-none-any.whl (8.3 kB view details)

Uploaded Python 3

File details

Details for the file slowgrad-0.2.0.tar.gz.

File metadata

  • Download URL: slowgrad-0.2.0.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for slowgrad-0.2.0.tar.gz
Algorithm Hash digest
SHA256 a661351c38becf3fc92775b93ef952d99825d674a0efdec37cf9474dcde88977
MD5 134d14d341226d3817d1a97152d33207
BLAKE2b-256 b840da0f828c3995c1d77a94bf0018ec34fa0451e7c660fae5e6e8d1ed87159a

See more details on using hashes here.

File details

Details for the file slowgrad-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: slowgrad-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 8.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for slowgrad-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 42d793a133161badf03e5a9203e4ef15c560a7ad89c84ff64f3ccb5a2695a257
MD5 c5ab77e4ac3b5d982f77a810dd10f995
BLAKE2b-256 d91dd6b6a607604d4f0398effe7bc8d22971f490aa3de9492f13a987811cf83e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page