Skip to main content

Take it slow, compute gradients

Project description

slowgrad

Unit tests

A small neural network library optimized for learning.

Inspired by PyTorch, micrograd, and tinygrad.

Build an MNIST Convnet

from slowgrad.layers import Linear, Conv2d

class TinyConvNetLayer:
  def __init__(self):

    self.c1 = Conv2d(1,8,kernel_size=(3,3))
    self.c2 = Conv2d(8,16,kernel_size=(3,3))
    self.l1 = Linear(16*5*5,10)

  def parameters(self):
    return [*self.l1.get_parameters(), *self.c1.get_parameters(), *self.c2.get_parameters()]

  def forward(self, x):
    x = x.reshape(shape=(-1, 1, 28, 28))
    x = self.c1(x).relu().max_pool2d()
    x = self.c2(x).relu().max_pool2d()
    x = x.reshape(shape=[x.shape[0], -1])
    return self.l1(x).logsoftmax()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

slowgrad-0.1.0.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

slowgrad-0.1.0-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file slowgrad-0.1.0.tar.gz.

File metadata

  • Download URL: slowgrad-0.1.0.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for slowgrad-0.1.0.tar.gz
Algorithm Hash digest
SHA256 4cab95e93de813346e313ca02c6ed51f4adb15227081dff5b18818fa00c3d913
MD5 dab46f05f4bd16d7361aed420459c7a5
BLAKE2b-256 02a628c4ccb93ada5e50c5e0c7907402a740e66443c9ba2f09147cd428f82270

See more details on using hashes here.

File details

Details for the file slowgrad-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: slowgrad-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 7.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.7

File hashes

Hashes for slowgrad-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5d0c2608ee638abc50940222faf14a243ce6156a9e2b5f326556378587b20815
MD5 206624a925df67a47b6b365024132d97
BLAKE2b-256 4dc20a613dce44b54577c273f618c80babef3fddbbbd694c37428d17cfcb3da2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page