Skip to main content

JITted SQLite user-defined functions and aggregates

Project description

Put some Numba in your SQLite

Fair Warning

This library does unsafe things like pass around function pointer addresses as integers. Use at your own risk.

If you're unfamiliar with why passing function pointers' addresses around as integers might be unsafe, then you shouldn't use this library.

Requirements

  • Python >=3.7
  • numba

Use nix-shell from the repository to avoid dependency hell.

Installation

  • poetry install

Examples

Scalar Functions

These are almost the same as decorating a Python function with numba.jit.

from typing import Optional

from slumba import sqlite_udf


@sqlite_udf
def add_one(x: Optional[int]) -> Optional[int]:
    """Add one to `x` if `x` is not NULL."""

    if x is not None:
        return x + 1
    return None

Aggregate Functions

These follow the API of the Python standard library's sqlite3.Connection.create_aggregate method. The difference with slumba aggregates is that they require two decorators: numba.experimental.jit_class and slumba.sqlite_udaf. Let's define the avg (arithmetic mean) function for 64-bit floating point numbers.

from typing import Optional

from numba.experimental import jitclass

from slumba import sqlite_udaf


@sqlite_udaf
@jitclass
class Avg:
    total: float
    count: int

    def __init__(self):
        self.total = 0.0
        self.count = 0

    def step(self, value: Optional[float]) -> None:
        if value is not None:
            self.total += value
            self.count += 1

    def finalize(self) -> Optional[float]:
        if not self.count:
            return None
        return self.total / self.count

Window Functions

You can also define window functions for use with SQLite's OVER construct:

from typing import Optional

from numba.experimental import jitclass

from slumba import sqlite_udaf


@sqlite_udaf
@jitclass
class WinAvg:  # pragma: no cover
    total: float
    count: int

    def __init__(self) -> None:
        self.total = 0.0
        self.count = 0

    def step(self, value: Optional[float]) -> None:
        if value is not None:
            self.total += value
            self.count += 1

    def finalize(self) -> Optional[float]:
        count = self.count
        if count:
            return self.total / count
        return None

    def value(self) -> Optional[float]:
        return self.finalize()

    def inverse(self, value: Optional[float]) -> None:
        if value is not None:
            self.total -= value
            self.count -= 1

Calling your aggregate function

Similar to scalar functions, we register the function with a sqlite3.Connection object:

>>> import sqlite3
>>> from slumba import create_aggregate, create_function
>>> con = sqlite3.connect(":memory:")
>>> create_function(con, "add_one", 1, add_one)
>>> con.execute("SELECT add_one(1)").fetchall()
[(2,)]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

slumba-3.1.0.tar.gz (18.8 kB view hashes)

Uploaded source

Built Distribution

slumba-3.1.0-py3-none-any.whl (19.5 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page