Manage and start jupyter slurm kernels
Project description
Slurm Jupyter Kernel
Manage (create, list, modify and delete) and starting jupyter slurm kernels using sbatch
.
slurmkernel is able to connect to a kernel started on a compute node using SSH port forwarding. You can specify a SSH proxy jump, if you have to jump over two hosts (e.g. a loadbalancer)
Slurm job 3251854 is in state "RUNNING"
Slurm job is in state running on compute node cn213
Starting SSH tunnel to forward kernel ports to localhost
Your started kernel is now ready to use on compute node cn213
Features & Use-Cases
- Start Remote Jupyter kernel using sbatch (Slurm)
- Access to your local filesystem with remote code execution
- Manage existing Slurm Jupyter kernel
- Use the template module to use pre-defined script templates for remote installation and local kernel creation
- Custom environment variables supported (e.g. JULIA_NUM_THREADS)
Table of Contents
- Slurm Jupyter Kernel
Installation
slurm_jupyter_kernel
must be installed locally where the Jupyter notebooks will run.
Install using pip
python3 -m pip install slurm_jupyter_kernel
Requirements for usage
- SSH-Key based authentication
You need a running SSH agent with the loaded key file to access the loginnode without a password.
Create a new kernel
We assume to install the Jupyter kernel tools into your $HOME
directory on your cluster.
Template module (Script templates)
With $ slurmkernel template {list, use, add, edit}
you can use pre-defined script templates to initialize your remote environment (IJulia, IPython, ...), add new script templates or edit existing templates.
If you want to create your own script templates, see here: Create Script Templates
Example
Note: Add the parameter --dry-run
to check the commands that will be executed!
$ slurmkernel template use --proxyjump lb.hpc.pc2.de --loginnode login001 --user hpcuser1 --template ipython
You will be interactively asked for the required information if you do not pass any arguments when calling slurmkernel template use
IPython Example
Remote Host
- load required software (if necessary)
- Create a Python virtual environment
- Install the IPython package (ipython, ipykernel)
- Create a wrapper script and mark it as executable
remotehost ~$ module load lang Python
remotehost ~$ python3 -m venv remotekernel/
remotehost ~$ source remotekernel/bin/activate
(remotekernel) remotehost ~$ python3 -m pip install ipython ipykernel; deactivate
remotehost ~$ echo -e '#!/bin/bash\nmodule load lang Python\n\nsource remotekernel/bin/activate\n"$@"' > remotekernel/ipy_wrapper.sh && chmod +x remotekernel/ipy_wrapper.sh
Localhost
- Kernel Remote Slurm kernel with command
slurmkernel
notebook ~$ slurmkernel create --displayname "Python 3.8.2" \
--slurm-parameter="account=slurmaccount,time=00:30:00,partition=normal" \
--kernel-cmd="\$HOME/remotekernel/ipy_wrapper.sh ipython kernel -f {connection_file}" \
--proxyjump="lb.n1.pc2.uni-paderborn.de" \
--loginnode="login-0001" \
--language="python"
Set kernel-specific environment
If you want to set kernel specific environment variables (e.g. JULIA_NUM_THREADS
for the number of threads) just extend the jupyter kernelspec file with env
.
Parameter for slurmkernel
:
--environment="JULIA_NUM_THREADS=4"
More information here: https://jupyter-client.readthedocs.io/en/stable/kernels.html
Using the kernel with Applications
- Install kernel as shown above
- Make sure that you pass the
--language
flag as well (e.g.python
orjulia
)
- Make sure that you pass the
Quarto Example
Troubleshooting
Kernel exceptions
When you start a Jupyter slurm kernel, it throws an excpetion, depending on the error case. You can read the exception from the graphical user interface like JupyterLab. If you start a kernel in the classic notebook view, you can click on "Error" on the left of the kernel status. There you can also find the exception.
Debugging
If your Slurm jupyter kernel does not start, it can have many causes. Before we turn on the debug mode, check following things:
- SSH-Agent is active/running and my key is loaded
- If you can log in in to the loginnode of the HPC system passwordless (Shell) that should work
- Correct Proxyjump (Loadbalancer), Loginnode
Get help
$ slurmkernel --help
usage: Tool to manage (create, list, modify and delete) and starting jupyter slurm kernels using srun [-h] [--version] {create,list,edit,delete,template} ...
positional arguments:
{create,list,edit,delete,template}
create create a new slurm kernel
list list available slurm kernel
edit edit an existing slurm kernel
delete delete an existing slurm kernel
template manage script templates (list, use, add, edit)
optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file slurm_jupyter_kernel-1.9.tar.gz
.
File metadata
- Download URL: slurm_jupyter_kernel-1.9.tar.gz
- Upload date:
- Size: 18.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 551264ca604e8fec520ec4d0bf5ee1888e60ac8809712288588b51cfee65ea0c |
|
MD5 | e3b77887f87c5d3f1127ad170c752486 |
|
BLAKE2b-256 | 164e4480b627f022d101d4127bff5e8c05d89aa7e583d6a243ba5f29597a2bec |
File details
Details for the file slurm_jupyter_kernel-1.9-py3-none-any.whl
.
File metadata
- Download URL: slurm_jupyter_kernel-1.9-py3-none-any.whl
- Upload date:
- Size: 17.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cf61dbcd7c63f188ab04329134abe81f2be0118c412c69b2b85994226f08a68c |
|
MD5 | 025125e3ae2338f5170dc8bab255cdee |
|
BLAKE2b-256 | 792f563d89795c5157eaac01089a4556ffeb5b2203ae2926f8343539e9e59281 |