Skip to main content

Utilities for generating VHDL to convert to and from std_logic_vector, as well as utilties to create testbenches described by python.

Project description

slvcodec is a tool that analyzes VHDL and generates:

  • Functions to convert arbitrary VHDL types to and from std_logic_vector.

  • Generate testbenches for entities that read inputs from a file, and write outputs to a file.

  • Utilities so that unit tests for VHDL code can easily to be written in python.

Generation of functions to convert to and from std_logic_vector

Here’s an example VHDL package.

library ieee;
use ieee.numeric_std.all;

package complex is

  constant FIXED_WIDTH: natural := 8;
  subtype fixed_t is unsigned(FIXED_WIDTH-1 downto 0);

  type complex_t is record
    real: fixed_t;
    imag: fixed_t;
  end record;

  type array_of_complex is array(natural range <>) of complex_t;

end package;

The following python script is used to generate a helper package that contains functions to convert the types to and from std_logic_vector.

import os

from slvcodec import filetestbench_generator


thisdir = os.path.dirname(__file__)


def make_slvcodec_package():
    complex_pkg_fn = os.path.join(thisdir, 'complex_pkg.vhd')
    directory = os.path.join(thisdir, 'generated')
    os.mkdir(directory)
    filetestbench_generator.add_slvcodec_files(directory, [complex_pkg_fn])


if __name__ == '__main__':
    make_slvcodec_package()

Here is what the generated VHDL looks like.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.complex.all;
use work.slvcodec.all;

package complex_slvcodec is


  function to_slvcodec (constant data: array_of_complex) return std_logic_vector;
  function from_slvcodec (constant slv: std_logic_vector) return array_of_complex;
  constant fixed_t_slvcodecwidth: natural := fixed_width;
  constant complex_t_slvcodecwidth: natural := 2*fixed_width;
  function to_slvcodec (constant data: complex_t) return std_logic_vector;
  function from_slvcodec (constant slv: std_logic_vector) return complex_t;

end package;

package body complex_slvcodec is

  function to_slvcodec (constant data: array_of_complex) return std_logic_vector is
    constant W: natural := complex_t_slvcodecwidth;
    constant N: natural := data'length;
    variable slv: std_logic_vector(N*W-1 downto 0);
  begin
    for ii in 0 to N-1 loop
      slv((ii+1)*W-1 downto ii*W) := to_slvcodec(data(ii));
    end loop;
    return slv;
  end function;

  function from_slvcodec (constant slv: std_logic_vector) return array_of_complex is
    constant W: natural := complex_t_slvcodecwidth;
    constant N: natural := slv'length/W;
    variable mapped: std_logic_vector(slv'length-1 downto 0);
    variable output: array_of_complex(N-1 downto 0);
  begin
    mapped := slv;
    for ii in 0 to N-1 loop
      output(ii) := from_slvcodec(mapped((ii+1)*W-1 downto ii*W));
    end loop;
    return output;
  end function;

  function to_slvcodec (constant data: complex_t) return std_logic_vector is
    constant W0: natural := 0;
    constant W1: natural := W0 + fixed_width;
    constant W2: natural := W1 + fixed_width;
    variable slv: std_logic_vector(complex_t_slvcodecwidth-1 downto 0);
  begin
    slv(W1-1 downto W0) := to_slvcodec(data.real);
    slv(W2-1 downto W1) := to_slvcodec(data.imag);
    return slv;
  end function;

  function from_slvcodec (constant slv: std_logic_vector) return complex_t is
    constant W0: natural := 0;
    constant W1: natural := W0 + fixed_width;
    constant W2: natural := W1 + fixed_width;
    variable data: complex_t;
    variable mapped: std_logic_vector(complex_t_slvcodecwidth-1 downto 0);
  begin
    mapped := slv;
    data.real := from_slvcodec(mapped(W1-1 downto W0));
    data.imag := from_slvcodec(mapped(W2-1 downto W1));
    return data;
  end function;

end package body;

Generation of file-based testbenches

Here’s an example entity that just returns the magnitude squared of a complex data type that we defined earlier.

library ieee;
use ieee.numeric_std.all;
use work.complex.all;

entity complex_mag2 is
  port (
    i: in complex_t;
    o: out unsigned(FIXED_WIDTH+1-1 downto 0)
    );
end entity;

architecture arch of complex_mag2 is

  signal real2: signed(FIXED_WIDTH*2-1 downto 0);
  signal imag2: signed(FIXED_WIDTH*2-1 downto 0);
  signal mag2: unsigned(FIXED_WIDTH*2-1 downto 0);
  signal scaled_mag2: unsigned(FIXED_WIDTH+1-1 downto 0);

begin

  real2 <= i.real * i.real;
  imag2 <= i.imag * i.imag;
  mag2 <= unsigned(real2) + unsigned(imag2);

  scaled_mag2 <= mag2(FIXED_WIDTH*2-1-1 downto FIXED_WIDTH-2);

  o <= scaled_mag2;

end architecture;

We can use slvcodec to generate a testbench that reads input data from a file, and writes output data to another file.

import os

from slvcodec import filetestbench_generator


thisdir = os.path.dirname(__file__)


def make_slvcodec_package():
    complex_pkg_fn = os.path.join(thisdir, 'complex_pkg.vhd')
    directory = os.path.join(thisdir, 'generated')
    os.mkdir(directory)
    slvcodec_files = filetestbench_generator.add_slvcodec_files(directory, [complex_pkg_fn])
    return slvcodec_files


def make_complex_mag2_testbench():
    base_filenames = [
        os.path.join(thisdir, 'complex_pkg.vhd'),
        os.path.join(thisdir, 'complex_mag2.vhd'),
        ]
    slvcodec_fns = make_slvcodec_package()
    with_slvcodec_fns = base_filenames + slvcodec_fns
    directory = os.path.join(thisdir, 'generated')
    generated_fns, generated_wrapper_fns, resolved = filetestbench_generator.prepare_files(
        directory=directory, filenames=with_slvcodec_fns,
        top_entity='complex_mag2')
    return generated_fns


if __name__ == '__main__':
    make_complex_mag2_testbench()

This will generate the following VHDL testbench.

library ieee;
use ieee.std_logic_1164.all;
use work.slvcodec.all;
use ieee.numeric_std.all;
use work.complex.all;
use work.complex_slvcodec.all;

entity complex_mag2_tb is
  generic (

    CLOCK_PERIOD: time := 10 ns;
    RUNNER_CFG: string;
    OUTPUT_PATH: string
  );
end entity;

architecture arch of complex_mag2_tb is
  type t_input is
record
    i: complex_t;
end record;
type t_output is
record
    o: unsigned((1+fixed_width)-1 downto 0);
end record;
  constant t_input_slvcodecwidth: natural := 2*fixed_width;
  function to_slvcodec (constant data: t_input) return std_logic_vector;
  function from_slvcodec (constant slv: std_logic_vector) return t_input;
  function to_slvcodec (constant data: t_input) return std_logic_vector is
    constant W0: natural := 0;
    constant W1: natural := W0 + 2*fixed_width;
    variable slv: std_logic_vector(t_input_slvcodecwidth-1 downto 0);
  begin
    slv(W1-1 downto W0) := to_slvcodec(data.i);
    return slv;
  end function;

  function from_slvcodec (constant slv: std_logic_vector) return t_input is
    constant W0: natural := 0;
    constant W1: natural := W0 + 2*fixed_width;
    variable data: t_input;
    variable mapped: std_logic_vector(t_input_slvcodecwidth-1 downto 0);
  begin
    mapped := slv;
    data.i := from_slvcodec(mapped(W1-1 downto W0));
    return data;
  end function;
  constant t_output_slvcodecwidth: natural := (1+fixed_width);
  function to_slvcodec (constant data: t_output) return std_logic_vector;
  function from_slvcodec (constant slv: std_logic_vector) return t_output;
  function to_slvcodec (constant data: t_output) return std_logic_vector is
    constant W0: natural := 0;
    constant W1: natural := W0 + (1+fixed_width);
    variable slv: std_logic_vector(t_output_slvcodecwidth-1 downto 0);
  begin
    slv(W1-1 downto W0) := to_slvcodec(data.o);
    return slv;
  end function;

  function from_slvcodec (constant slv: std_logic_vector) return t_output is
    constant W0: natural := 0;
    constant W1: natural := W0 + (1+fixed_width);
    variable data: t_output;
    variable mapped: std_logic_vector(t_output_slvcodecwidth-1 downto 0);
  begin
    mapped := slv;
    data.o := from_slvcodec(mapped(W1-1 downto W0));
    return data;
  end function;
  signal input_data: t_input;
  signal output_data: t_output;
  signal input_slv: std_logic_vector(t_input_slvcodecwidth-1 downto 0);
  signal output_slv: std_logic_vector(t_output_slvcodecwidth-1 downto 0);
  signal clk: std_logic;
  signal read_clk: std_logic;
  signal write_clk: std_logic;
begin

  input_data <= from_slvcodec(input_slv);
  output_slv <= to_slvcodec(output_data);

  file_reader: entity work.ReadFile
    generic map(FILENAME => OUTPUT_PATH & "/indata.dat",
                PASSED_RUNNER_CFG => RUNNER_CFG,
                WIDTH => t_input_slvcodecwidth)
    port map(clk => read_clk,
             out_data => input_slv);

  file_writer: entity work.WriteFile
    generic map(FILENAME => OUTPUT_PATH & "/outdata.dat",
                WIDTH => t_output_slvcodecwidth)
    port map(clk => write_clk,
             in_data => output_slv);

  clock_generator: entity work.ClockGenerator
    generic map(CLOCK_PERIOD => CLOCK_PERIOD,
                CLOCK_OFFSET => 0 ns
                )
    port map(clk => clk);

  read_clock_generator: entity work.ClockGenerator
    generic map(CLOCK_PERIOD => CLOCK_PERIOD,
                CLOCK_OFFSET => CLOCK_PERIOD/10
                )
    port map(clk => read_clk);

  write_clock_generator: entity work.ClockGenerator
    generic map(CLOCK_PERIOD => CLOCK_PERIOD,
                CLOCK_OFFSET => 4*CLOCK_PERIOD/10
                )
    port map(clk => write_clk);

  dut: entity work.complex_mag2
    port map(
             i => input_data.i,
o => output_data.o
             );

end architecture;

But generating a test bench that just reads and writes the input and output data to and from files isn’t particularly useful unless we have a way of generating the input data, and checking the output data. Slvcodec include tools to do this with python.

Python-based testing

We define a python class with a make_input_data method that returns an iterable of dictionaries specifying the input data, and a check_output_data method that receives a list of input_data dictionaries and a list of output data dictionaries, that raises an exeception is the output data is incorrect.

class ComplexMag2Test:

    def __init__(self, resolved, generics, top_params):
        # Here we're taking advantage of the fact that when the test is intialized it
        # has access to the parsed VHDL.  We use that to get the value of the constant
        # FIXED_WIDTH that is defined in complex_pkg.vhd.
        self.fixed_width = resolved['packages']['complex'].constants['fixed_width'].value()
        self.max_fixed = pow(2, self.fixed_width-1)-1
        self.min_fixed = -pow(2, self.fixed_width-1)
        self.n_data = 100

    def fixed_to_float(self, f):
        r = f / pow(2, self.fixed_width-2)
        return r

    def make_input_data(self, seed=None, n_data=3000):
        input_data = [{
            'i': {'real': random.randint(self.min_fixed, self.max_fixed),
                  'imag': random.randint(self.min_fixed, self.max_fixed)},
        } for i in range(self.n_data)]

        return input_data

    def check_output_data(self, input_data, output_data):
        inputs = [self.fixed_to_float(d['i']['real']) + self.fixed_to_float(d['i']['imag']) * 1j
                  for d in input_data]
        input_float_mag2s = [abs(v)*abs(v) for v in inputs]
        outputs = [self.fixed_to_float(d['o']) for d in output_data]
        differences = [abs(expected - actual) for expected, actual in zip(input_float_mag2s, outputs)]
        allowed_error = 1/pow(2, self.fixed_width-2)
        assert all([d < allowed_error for d in differences])

We then use slvcodec.test_utils.register_test_with_vunit to generate an appropriate testbench and input data file, and register the produced test with vunit. VUnit can then be run as normal.

from slvcodec import test_utils, config
import os

if __name__ == '__main__':
    random.seed(0)
    # Initialize vunit with command line parameters.
    vu = config.setup_vunit()
    # Set up logging.
    config.setup_logging(vu.log_level)
    # Get filenames for test
    this_dir = os.path.dirname(os.path.realpath(__file__))
    filenames = [
        os.path.join(this_dir, 'complex_pkg.vhd'),
        os.path.join(this_dir, 'complex_mag2.vhd'),
        ]
    # Register the test with VUnit.
    test_output_directory = os.path.join(this_dir, 'generated')
    test_utils.register_test_with_vunit(
        vu=vu,
        directory=test_output_directory,
        filenames=filenames,
        top_entity='complex_mag2',
        all_generics=[{}],
        test_class=ComplexMag2Test,
        top_params={},
        )
    # Run the tests with VUnit
    vu.set_sim_option('disable_ieee_warnings', True)
    vu.main()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

slvcodec-0.4.18.tar.gz (74.8 kB view details)

Uploaded Source

Built Distribution

slvcodec-0.4.18-py3-none-any.whl (82.1 kB view details)

Uploaded Python 3

File details

Details for the file slvcodec-0.4.18.tar.gz.

File metadata

  • Download URL: slvcodec-0.4.18.tar.gz
  • Upload date:
  • Size: 74.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for slvcodec-0.4.18.tar.gz
Algorithm Hash digest
SHA256 690dbd938230ac116947554ecd2373fda19dd98f37093dff5a950c1c989b4668
MD5 bc873a3705c635019dd7550f6c9a7750
BLAKE2b-256 8a8c6ac3c49f1aac66256623182e5ecc8b15edb87fd3bcd1e0b51d072ff4757d

See more details on using hashes here.

File details

Details for the file slvcodec-0.4.18-py3-none-any.whl.

File metadata

  • Download URL: slvcodec-0.4.18-py3-none-any.whl
  • Upload date:
  • Size: 82.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for slvcodec-0.4.18-py3-none-any.whl
Algorithm Hash digest
SHA256 7fe1f6f7d6941c67013dd054614f1fe1ea204a22f5a1a7d75c28a67b5305e80a
MD5 ab2174209ff91b186648987fae55e2f7
BLAKE2b-256 d83e477a6e127248a9bad12902c7304d04f43e30ef127d6038415557f6e94daf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page