Extract geometric traits from top-view images of plants.
Project description
Speedy Measurement of Arabidopsis Rosette Traits (SMART)
Author: Suxing Liu
Robust and parameter-free plant image segmentation and trait extraction.
- Process with plant image top view, including whole tray plant image, this tool will segment it into individual images.
- Robust segmentation based on parameter-free color clustering method.
- Extract individual plant gemetrical traits, and write output into excel file.
Requirements
Either Docker or Singularity is required to run this project in a Unix environment.
Usage
Docker
docker pull computationalplantscience/smart
docker run -v "$(pwd)":/opt/arabidopsis-rosette-analysis -w /opt/arabidopsis-rosette-analysis computationalplantscience/arabidopsis-rosette-analysis python3 /opt/arabidopsis-rosette-analysis/trait_extract_parallel.py -i input -o output -ft "jpg,png"
Singularity
singularity exec docker://computationalplantscience/arabidopsis-rosette-analysis python3 trait_extract_parallel.py -i input -o output -ft "jpg,png"
Contents
Requirements
The easiest way to run this project is with Docker or Singularity .
To pull the computationalplantscience/smart
image, the current working directory, and open a shell with Docker:
docker run -it -v $(pwd):/opt/dev -w /opt/dev computationalplantscience/smart bash
Singularity users:
singularity shell docker://computationalplantscience/smart
Usage
Segmentation
To perform color segmentation:
python3 /opt/smart/core/color_seg.py -p /path/to/input/file -r /path/to/output/folder
You can also pass a folder path (-p /path/to/dir
). By default any JPG
and PNG
are included. You can choose filetype explicitly with e.g. -ft jpg
.
To extract traits:
python3 /opt/smart/core/trait_extract_parallel_ori.py -p /path/to/input/file -r /path/to/output/folder
You can also use a folder path as above, likewise for filetype specification.
By default this script will not perform leaf segmentation and analysis. To enable leaf analysis, use the -l
flag.
To indicate that your input is a multiple-tray or -individual photo, add the -m
flag.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file smart-arabidopsis-traits-0.5.4.tar.gz
.
File metadata
- Download URL: smart-arabidopsis-traits-0.5.4.tar.gz
- Upload date:
- Size: 94.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 47bb2f125d907fd1a71315f2724c37e4a5fd065c7c8c76d4fa74069660de0bdd |
|
MD5 | 3e91ebb9bd464f14b6379759cd85f31e |
|
BLAKE2b-256 | c5ae8042f1e828c1f66f561ddb56824d142bfc18f52cce7f058daaa341976231 |
File details
Details for the file smart_arabidopsis_traits-0.5.4-py3-none-any.whl
.
File metadata
- Download URL: smart_arabidopsis_traits-0.5.4-py3-none-any.whl
- Upload date:
- Size: 134.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5df5846f9c1c3635c4e570888f26eef25d02299cf852ffff724557887f89d9f |
|
MD5 | 4b2476bde0e583ba1b2fbf861abb8aaf |
|
BLAKE2b-256 | e1fe33ade059db928d7f6b6d8fb8d19fd6d39e84591c39a3431e0730385694b8 |