Skip to main content

Extract geometric traits from top-view images of plants.

Project description

Speedy Measurement of Arabidopsis Rosette Traits (SMART)

Author: Suxing Liu

CI

Optional Text

Robust and parameter-free plant image segmentation and trait extraction.

  1. Process with plant image top view, including whole tray plant image, this tool will segment it into individual images.
  2. Robust segmentation based on parameter-free color clustering method.
  3. Extract individual plant gemetrical traits, and write output into excel file.

Requirements

Either Docker or Singularity is required to run this project in a Unix environment.

Usage

Docker

docker pull computationalplantscience/smart
docker run -v "$(pwd)":/opt/arabidopsis-rosette-analysis -w /opt/arabidopsis-rosette-analysis computationalplantscience/arabidopsis-rosette-analysis python3 /opt/arabidopsis-rosette-analysis/trait_extract_parallel.py -i input -o output -ft "jpg,png"

Singularity

singularity exec docker://computationalplantscience/arabidopsis-rosette-analysis python3 trait_extract_parallel.py -i input -o output -ft "jpg,png"

Optional Text

Contents

Requirements

The easiest way to run this project is with Docker or Singularity .

To pull the computationalplantscience/smart image, the current working directory, and open a shell with Docker:

docker run -it -v $(pwd):/opt/dev -w /opt/dev computationalplantscience/smart bash

Singularity users:

singularity shell docker://computationalplantscience/smart

Usage

Segmentation

To perform color segmentation:

python3 /opt/smart/core/color_seg.py -p /path/to/input/file -r /path/to/output/folder

You can also pass a folder path (-p /path/to/dir). By default any JPG and PNG are included. You can choose filetype explicitly with e.g. -ft jpg.

To extract traits:

python3 /opt/smart/core/trait_extract_parallel_ori.py -p /path/to/input/file -r /path/to/output/folder

You can also use a folder path as above, likewise for filetype specification.

By default this script will not perform leaf segmentation and analysis. To enable leaf analysis, use the -l flag.

To indicate that your input is a multiple-tray or -individual photo, add the -m flag.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smart-arabidopsis-traits-0.5.4.tar.gz (94.9 kB view details)

Uploaded Source

Built Distribution

smart_arabidopsis_traits-0.5.4-py3-none-any.whl (134.3 kB view details)

Uploaded Python 3

File details

Details for the file smart-arabidopsis-traits-0.5.4.tar.gz.

File metadata

  • Download URL: smart-arabidopsis-traits-0.5.4.tar.gz
  • Upload date:
  • Size: 94.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for smart-arabidopsis-traits-0.5.4.tar.gz
Algorithm Hash digest
SHA256 47bb2f125d907fd1a71315f2724c37e4a5fd065c7c8c76d4fa74069660de0bdd
MD5 3e91ebb9bd464f14b6379759cd85f31e
BLAKE2b-256 c5ae8042f1e828c1f66f561ddb56824d142bfc18f52cce7f058daaa341976231

See more details on using hashes here.

File details

Details for the file smart_arabidopsis_traits-0.5.4-py3-none-any.whl.

File metadata

  • Download URL: smart_arabidopsis_traits-0.5.4-py3-none-any.whl
  • Upload date:
  • Size: 134.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for smart_arabidopsis_traits-0.5.4-py3-none-any.whl
Algorithm Hash digest
SHA256 a5df5846f9c1c3635c4e570888f26eef25d02299cf852ffff724557887f89d9f
MD5 4b2476bde0e583ba1b2fbf861abb8aaf
BLAKE2b-256 e1fe33ade059db928d7f6b6d8fb8d19fd6d39e84591c39a3431e0730385694b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page