Skip to main content

Chroma.

Project description

Chroma logo

Chroma - the open-source embedding database.
The fastest way to build Python or JavaScript LLM apps with memory!

Discord | License | Docs | Homepage

Integration Tests | Tests

pip install chromadb # python client
# for javascript, npm install chromadb!
# for client-server mode, docker-compose up -d --build

The core API is only 4 functions (run our 💡 Google Colab or Replit template):

import chromadb
# setup Chroma in-memory, for easy prototyping. Can add persistence easily!
client = chromadb.Client()

# Create collection. get_collection, get_or_create_collection, delete_collection also available!
collection = client.create_collection("all-my-documents")

# Add docs to the collection. Can also update and delete. Row-based API coming soon!
collection.add(
    documents=["This is document1", "This is document2"], # we handle tokenization, embedding, and indexing automatically. You can skip that and add your own embeddings as well
    metadatas=[{"source": "notion"}, {"source": "google-docs"}], # filter on these!
    ids=["doc1", "doc2"], # unique for each doc
)

# Query/search 2 most similar results. You can also .get by id
results = collection.query(
    query_texts=["This is a query document"],
    n_results=2,
    # where={"metadata_field": "is_equal_to_this"}, # optional filter
    # where_document={"$contains":"search_string"}  # optional filter
)

Features

  • Simple: Fully-typed, fully-tested, fully-documented == happiness
  • Integrations: 🦜️🔗 LangChain (python and js), 🦙 LlamaIndex and more soon
  • Dev, Test, Prod: the same API that runs in your python notebook, scales to your cluster
  • Feature-rich: Queries, filtering, density estimation and more
  • Free & Open Source: Apache 2.0 Licensed

Use case: ChatGPT for ______

For example, the "Chat your data" use case:

  1. Add documents to your database. You can pass in your own embeddings, embedding function, or let Chroma embed them for you.
  2. Query relevant documents with natural language.
  3. Compose documents into the context window of an LLM like GPT3 for additional summarization or analysis.

Embeddings?

What are embeddings?

  • Read the guide from OpenAI
  • Literal: Embedding something turns it from image/text/audio into a list of numbers. 🖼️ or 📄 => [1.2, 2.1, ....]. This process makes documents "understandable" to a machine learning model.
  • By analogy: An embedding represents the essence of a document. This enables documents and queries with the same essence to be "near" each other and therefore easy to find.
  • Technical: An embedding is the latent-space position of a document at a layer of a deep neural network. For models trained specifically to embed data, this is the last layer.
  • A small example: If you search your photos for "famous bridge in San Francisco". By embedding this query and comparing it to the embeddings of your photos and their metadata - it should return photos of the Golden Gate Bridge.

Embeddings databases (also known as vector databases) store embeddings and allow you to search by nearest neighbors rather than by substrings like a traditional database. By default, Chroma uses Sentence Transformers to embed for you but you can also use OpenAI embeddings, Cohere (multilingual) embeddings, or your own.

Get involved

Chroma is a rapidly developing project. We welcome PR contributors and ideas for how to improve the project.

Release Cadence We currently release new tagged versions of the pypi and npm packages on Mondays. Hotfixes go out at any time during the week.

License

Apache 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smart_chromadb-0.1.dev731.tar.gz (367.1 kB view details)

Uploaded Source

Built Distribution

smart_chromadb-0.1.dev731-py3-none-any.whl (127.8 kB view details)

Uploaded Python 3

File details

Details for the file smart_chromadb-0.1.dev731.tar.gz.

File metadata

  • Download URL: smart_chromadb-0.1.dev731.tar.gz
  • Upload date:
  • Size: 367.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.0

File hashes

Hashes for smart_chromadb-0.1.dev731.tar.gz
Algorithm Hash digest
SHA256 76337d8ef8bd52093206963288f5267f08b8d5b5da29b82bcf52dec031962481
MD5 a441308533290d3daa66392f89ac35cb
BLAKE2b-256 7dd7df184e4d9bd8637adffc439496d4a3076fdb0558454f9d977c4e162c2020

See more details on using hashes here.

File details

Details for the file smart_chromadb-0.1.dev731-py3-none-any.whl.

File metadata

File hashes

Hashes for smart_chromadb-0.1.dev731-py3-none-any.whl
Algorithm Hash digest
SHA256 d2c2f7737c153789c20291e4b94687c27ff5196a312186afb8f4a45b3148e11d
MD5 3f02c9ff856383fcaaf17af734d722b9
BLAKE2b-256 85f5667c4917947e678f4e425734078842b6080b1e19ca5f9bd11d954ab30a69

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page