Skip to main content

Chroma.

Project description

Chroma logo

Chroma - the open-source embedding database.
The fastest way to build Python or JavaScript LLM apps with memory!

Discord | License | Docs | Homepage

Integration Tests | Tests

pip install chromadb # python client
# for javascript, npm install chromadb!
# for client-server mode, docker-compose up -d --build

The core API is only 4 functions (run our 💡 Google Colab or Replit template):

import chromadb
# setup Chroma in-memory, for easy prototyping. Can add persistence easily!
client = chromadb.Client()

# Create collection. get_collection, get_or_create_collection, delete_collection also available!
collection = client.create_collection("all-my-documents")

# Add docs to the collection. Can also update and delete. Row-based API coming soon!
collection.add(
    documents=["This is document1", "This is document2"], # we handle tokenization, embedding, and indexing automatically. You can skip that and add your own embeddings as well
    metadatas=[{"source": "notion"}, {"source": "google-docs"}], # filter on these!
    ids=["doc1", "doc2"], # unique for each doc
)

# Query/search 2 most similar results. You can also .get by id
results = collection.query(
    query_texts=["This is a query document"],
    n_results=2,
    # where={"metadata_field": "is_equal_to_this"}, # optional filter
    # where_document={"$contains":"search_string"}  # optional filter
)

Features

  • Simple: Fully-typed, fully-tested, fully-documented == happiness
  • Integrations: 🦜️🔗 LangChain (python and js), 🦙 LlamaIndex and more soon
  • Dev, Test, Prod: the same API that runs in your python notebook, scales to your cluster
  • Feature-rich: Queries, filtering, density estimation and more
  • Free & Open Source: Apache 2.0 Licensed

Use case: ChatGPT for ______

For example, the "Chat your data" use case:

  1. Add documents to your database. You can pass in your own embeddings, embedding function, or let Chroma embed them for you.
  2. Query relevant documents with natural language.
  3. Compose documents into the context window of an LLM like GPT3 for additional summarization or analysis.

Embeddings?

What are embeddings?

  • Read the guide from OpenAI
  • Literal: Embedding something turns it from image/text/audio into a list of numbers. 🖼️ or 📄 => [1.2, 2.1, ....]. This process makes documents "understandable" to a machine learning model.
  • By analogy: An embedding represents the essence of a document. This enables documents and queries with the same essence to be "near" each other and therefore easy to find.
  • Technical: An embedding is the latent-space position of a document at a layer of a deep neural network. For models trained specifically to embed data, this is the last layer.
  • A small example: If you search your photos for "famous bridge in San Francisco". By embedding this query and comparing it to the embeddings of your photos and their metadata - it should return photos of the Golden Gate Bridge.

Embeddings databases (also known as vector databases) store embeddings and allow you to search by nearest neighbors rather than by substrings like a traditional database. By default, Chroma uses Sentence Transformers to embed for you but you can also use OpenAI embeddings, Cohere (multilingual) embeddings, or your own.

Get involved

Chroma is a rapidly developing project. We welcome PR contributors and ideas for how to improve the project.

Release Cadence We currently release new tagged versions of the pypi and npm packages on Mondays. Hotfixes go out at any time during the week.

License

Apache 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smart_chromadb-0.1.dev732.tar.gz (368.0 kB view details)

Uploaded Source

Built Distribution

smart_chromadb-0.1.dev732-py3-none-any.whl (128.9 kB view details)

Uploaded Python 3

File details

Details for the file smart_chromadb-0.1.dev732.tar.gz.

File metadata

  • Download URL: smart_chromadb-0.1.dev732.tar.gz
  • Upload date:
  • Size: 368.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.0

File hashes

Hashes for smart_chromadb-0.1.dev732.tar.gz
Algorithm Hash digest
SHA256 966ff03c003e357f935343cc55c6a98a3d07bd90f475883ed4e3f4f32f3e783e
MD5 f476859e539affde6313e69fec37d59e
BLAKE2b-256 6b27684eb237312bc682de6aa0be9a33c6ceec14ec9148456eba63e0bf0ecade

See more details on using hashes here.

File details

Details for the file smart_chromadb-0.1.dev732-py3-none-any.whl.

File metadata

File hashes

Hashes for smart_chromadb-0.1.dev732-py3-none-any.whl
Algorithm Hash digest
SHA256 0128c8b97d7b1fb9c821e354c8adb8a1c8c5c90b1dffe5f7960267e42151e79d
MD5 16c8cacf9d91d344892ee17b0e741c07
BLAKE2b-256 dbe2836c8ec71da0dc6f3bf0e1796967df5aade6f7851d794197d371a2b29901

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page