RedisAI clients for SmartSim
Project description
SmartRedis
SmartRedis is a collection of Redis clients that support RedisAI capabilities and include additional features for high performance computing (HPC) applications. SmartRedis provides clients in the following languages:
Language | Version/Standard |
---|---|
Python | 3.9, 3.10, 3.11 |
C++ | C++17 |
C | C99 |
Fortran | Fortran 2018 (GNU/Intel), 2003 (PGI/Nvidia) |
SmartRedis is used in the SmartSim library. SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow in numerical simulations at scale. SmartRedis connects these simulations to a Redis database or Redis database cluster for data storage, script execution, and model evaluation. While SmartRedis contains features for simulation workflows on supercomputers, SmartRedis is fully functional as a RedisAI client library and can be used without SmartSim in any Python, C++, C, or Fortran project.
Using SmartRedis
SmartRedis installation instructions are currently hosted as part of the SmartSim library installation instructions Additionally, detailed API documents are also available as part of the SmartSim documentation.
Dependencies
SmartRedis utilizes the following libraries:
Publications
The following are public presentations or publications using SmartRedis
- Collaboration with NCAR - CGD Seminar
- Using Machine Learning in HPC Simulations - paper
- Relexi — A scalable open source reinforcement learning framework for high-performance computing - paper
Cite
Please use the following citation when referencing SmartSim, SmartRedis, or any SmartSim related work:
Partee et al., "Using Machine Learning at scale in numerical simulations with SmartSim:
An application to ocean climate modeling",
Journal of Computational Science, Volume 62, 2022, 101707, ISSN 1877-7503.
Open Access: https://doi.org/10.1016/j.jocs.2022.101707.
bibtex
@article{PARTEE2022101707,
title = {Using Machine Learning at scale in numerical simulations with SmartSim:
An application to ocean climate modeling},
journal = {Journal of Computational Science},
volume = {62},
pages = {101707},
year = {2022},
issn = {1877-7503},
doi = {https://doi.org/10.1016/j.jocs.2022.101707},
url = {https://www.sciencedirect.com/science/article/pii/S1877750322001065},
author = {Sam Partee and Matthew Ellis and Alessandro Rigazzi and Andrew E. Shao
and Scott Bachman and Gustavo Marques and Benjamin Robbins},
keywords = {Deep learning, Numerical simulation, Climate modeling, High performance computing, SmartSim},
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file smartredis-0.6.1.tar.gz
.
File metadata
- Download URL: smartredis-0.6.1.tar.gz
- Upload date:
- Size: 215.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 88bd5425abf03830382143c9b9acc2ee362e8251eafb46de48c515e9d6a373f5 |
|
MD5 | 1a95ec9b66c31054459ec5f7a9401fd9 |
|
BLAKE2b-256 | c6fec0288d25f03a9b839086a7222594af84e4cee8a5a60a4183f69f298aeb25 |
File details
Details for the file smartredis-0.6.1-cp311-cp311-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: smartredis-0.6.1-cp311-cp311-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.11, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 882860a0047a6b0cb79a74f0d6ba89378c2934148af378eb7788548aec72985a |
|
MD5 | 0beccc4116b2ded60908b530bc44378b |
|
BLAKE2b-256 | 149316d52ec9ce925dafd06c91fa67d3dbc7026a91f9aac89bdb72d30b24bfab |
File details
Details for the file smartredis-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: smartredis-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 877.2 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4e77b53be6c05c30189dde40fb30cc21a11e96015d6add54e6b2ecc2d679259f |
|
MD5 | 4802c9d64b94b4b19ebf196fc2401734 |
|
BLAKE2b-256 | bd03e2877e383d8023bcba897e477a4e0d65efd5271e93133cd5c2161cfc4fa1 |
File details
Details for the file smartredis-0.6.1-cp311-cp311-macosx_14_0_arm64.whl
.
File metadata
- Download URL: smartredis-0.6.1-cp311-cp311-macosx_14_0_arm64.whl
- Upload date:
- Size: 2.4 MB
- Tags: CPython 3.11, macOS 14.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 259c08860f680c704d2cbbcea58e819d8dfe014807e67e8a3fe6251fb5c0ab88 |
|
MD5 | 68f9cc06945c07831f856399f1f3aa55 |
|
BLAKE2b-256 | 5b9e622cf0fed4ddd91b432054678952364742fb037fa2864098bcde9f148043 |
File details
Details for the file smartredis-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: smartredis-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl
- Upload date:
- Size: 829.6 kB
- Tags: CPython 3.11, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a2f5e90a2f6e4a40cd2874e03209c083c6cdea8c4dfa9407c8318ef0f0c20ee |
|
MD5 | f62f8db019dd3f4f287c3eec3c5e761a |
|
BLAKE2b-256 | 23a4e6c98d4ddb0269c808ed1029485b88a97dc253460f35e658735323237d61 |
File details
Details for the file smartredis-0.6.1-cp310-cp310-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: smartredis-0.6.1-cp310-cp310-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.10, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c062de15955a5ceb8132f9028a216584d906e7cecbfcaecdd9ad894c139e69a |
|
MD5 | 2309db01134b36cf9d45e3aaf66ab9a5 |
|
BLAKE2b-256 | bb19160b853f145238b6630c2ea97471436c0c07b81aa8198ac874e9587fc260 |
File details
Details for the file smartredis-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: smartredis-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 876.3 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 04a1837bdd3154c3b90b2fb05ee35d8237ec57421cdd8fa794bdbb258dba1151 |
|
MD5 | 7b30aeffc020fe4d6b365524c600891f |
|
BLAKE2b-256 | 1d69b8c0156905d0904d99990d8a914fb641bd989028fd579555de9626de78ac |
File details
Details for the file smartredis-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: smartredis-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl
- Upload date:
- Size: 828.6 kB
- Tags: CPython 3.10, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bbe27c244d4e0393d92a2c80f6f73f3cdf835bab3f310eb6a0965649b4998e54 |
|
MD5 | 4c1665c788d86b59fc00847a3905f106 |
|
BLAKE2b-256 | bae7d92f3d97cfe07b62b9c4e441683b81e3496039a2946d8e6d1d578306c0ec |
File details
Details for the file smartredis-0.6.1-cp39-cp39-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: smartredis-0.6.1-cp39-cp39-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.9, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fbcea605d7a1bd5b475de2ae6136a932585d82c3fcfee5a05ccc0372acb31f30 |
|
MD5 | fe6b72e0b66e07642093fe21279b5881 |
|
BLAKE2b-256 | 27f7b64c9dad75d70c5f4fca14798e772492ffded80193b27ed701ccdff43c4a |
File details
Details for the file smartredis-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: smartredis-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 876.5 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3deed1c38c0c51dfc9132d04fecc1dc5d20ee1545ed542e1bbfe675cb9088fba |
|
MD5 | 4e807ec3ff17c1a94078e44c6daf9f17 |
|
BLAKE2b-256 | 84ff0677344f31f0f621a501db7abf7d67df7e62019b15953d7a6a48f8b3be0d |
File details
Details for the file smartredis-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: smartredis-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 828.8 kB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5b93b9cf2a498505501f590b3dcd68d37ea983ea7eb700032d94b91161fda8e1 |
|
MD5 | 5ec19285f42e4484447a2b2766e888f8 |
|
BLAKE2b-256 | 4b9a3beabcd2dafd6e5a492a9d6ca69c6250d93ee9f0027c554a6e880f7ecf1b |