Skip to main content

RedisAI clients for SmartSim

Project description



Home    Install    Documentation    Slack    Cray Labs   


License GitHub last commit PyPI - Wheel GitHub tag (latest by date) PyPI - Python Version Language Code style: black codecov

SmartRedis

SmartRedis is a collection of Redis clients that support RedisAI capabilities and include additional features for high performance computing (HPC) applications. SmartRedis provides clients in the following languages:

Language Version/Standard
Python 3.9, 3.10, 3.11
C++ C++17
C C99
Fortran Fortran 2018 (GNU/Intel), 2003 (PGI/Nvidia)

SmartRedis is used in the SmartSim library. SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow in numerical simulations at scale. SmartRedis connects these simulations to a Redis database or Redis database cluster for data storage, script execution, and model evaluation. While SmartRedis contains features for simulation workflows on supercomputers, SmartRedis is fully functional as a RedisAI client library and can be used without SmartSim in any Python, C++, C, or Fortran project.

Using SmartRedis

SmartRedis installation instructions are currently hosted as part of the SmartSim library installation instructions Additionally, detailed API documents are also available as part of the SmartSim documentation.

Dependencies

SmartRedis utilizes the following libraries:

Publications

The following are public presentations or publications using SmartRedis

Cite

Please use the following citation when referencing SmartSim, SmartRedis, or any SmartSim related work:

Partee et al., "Using Machine Learning at scale in numerical simulations with SmartSim:
An application to ocean climate modeling",
Journal of Computational Science, Volume 62, 2022, 101707, ISSN 1877-7503.
Open Access: https://doi.org/10.1016/j.jocs.2022.101707.

bibtex

@article{PARTEE2022101707,
    title = {Using Machine Learning at scale in numerical simulations with SmartSim:
    An application to ocean climate modeling},
    journal = {Journal of Computational Science},
    volume = {62},
    pages = {101707},
    year = {2022},
    issn = {1877-7503},
    doi = {https://doi.org/10.1016/j.jocs.2022.101707},
    url = {https://www.sciencedirect.com/science/article/pii/S1877750322001065},
    author = {Sam Partee and Matthew Ellis and Alessandro Rigazzi and Andrew E. Shao
    and Scott Bachman and Gustavo Marques and Benjamin Robbins},
    keywords = {Deep learning, Numerical simulation, Climate modeling, High performance computing, SmartSim},
    }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smartredis-0.6.1.tar.gz (215.9 kB view details)

Uploaded Source

Built Distributions

smartredis-0.6.1-cp311-cp311-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

smartredis-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (877.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

smartredis-0.6.1-cp311-cp311-macosx_14_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

smartredis-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl (829.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

smartredis-0.6.1-cp310-cp310-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

smartredis-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (876.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

smartredis-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl (828.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

smartredis-0.6.1-cp39-cp39-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

smartredis-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (876.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

smartredis-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl (828.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file smartredis-0.6.1.tar.gz.

File metadata

  • Download URL: smartredis-0.6.1.tar.gz
  • Upload date:
  • Size: 215.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for smartredis-0.6.1.tar.gz
Algorithm Hash digest
SHA256 88bd5425abf03830382143c9b9acc2ee362e8251eafb46de48c515e9d6a373f5
MD5 1a95ec9b66c31054459ec5f7a9401fd9
BLAKE2b-256 c6fec0288d25f03a9b839086a7222594af84e4cee8a5a60a4183f69f298aeb25

See more details on using hashes here.

File details

Details for the file smartredis-0.6.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 882860a0047a6b0cb79a74f0d6ba89378c2934148af378eb7788548aec72985a
MD5 0beccc4116b2ded60908b530bc44378b
BLAKE2b-256 149316d52ec9ce925dafd06c91fa67d3dbc7026a91f9aac89bdb72d30b24bfab

See more details on using hashes here.

File details

Details for the file smartredis-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e77b53be6c05c30189dde40fb30cc21a11e96015d6add54e6b2ecc2d679259f
MD5 4802c9d64b94b4b19ebf196fc2401734
BLAKE2b-256 bd03e2877e383d8023bcba897e477a4e0d65efd5271e93133cd5c2161cfc4fa1

See more details on using hashes here.

File details

Details for the file smartredis-0.6.1-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.1-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 259c08860f680c704d2cbbcea58e819d8dfe014807e67e8a3fe6251fb5c0ab88
MD5 68f9cc06945c07831f856399f1f3aa55
BLAKE2b-256 5b9e622cf0fed4ddd91b432054678952364742fb037fa2864098bcde9f148043

See more details on using hashes here.

File details

Details for the file smartredis-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3a2f5e90a2f6e4a40cd2874e03209c083c6cdea8c4dfa9407c8318ef0f0c20ee
MD5 f62f8db019dd3f4f287c3eec3c5e761a
BLAKE2b-256 23a4e6c98d4ddb0269c808ed1029485b88a97dc253460f35e658735323237d61

See more details on using hashes here.

File details

Details for the file smartredis-0.6.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8c062de15955a5ceb8132f9028a216584d906e7cecbfcaecdd9ad894c139e69a
MD5 2309db01134b36cf9d45e3aaf66ab9a5
BLAKE2b-256 bb19160b853f145238b6630c2ea97471436c0c07b81aa8198ac874e9587fc260

See more details on using hashes here.

File details

Details for the file smartredis-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 04a1837bdd3154c3b90b2fb05ee35d8237ec57421cdd8fa794bdbb258dba1151
MD5 7b30aeffc020fe4d6b365524c600891f
BLAKE2b-256 1d69b8c0156905d0904d99990d8a914fb641bd989028fd579555de9626de78ac

See more details on using hashes here.

File details

Details for the file smartredis-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bbe27c244d4e0393d92a2c80f6f73f3cdf835bab3f310eb6a0965649b4998e54
MD5 4c1665c788d86b59fc00847a3905f106
BLAKE2b-256 bae7d92f3d97cfe07b62b9c4e441683b81e3496039a2946d8e6d1d578306c0ec

See more details on using hashes here.

File details

Details for the file smartredis-0.6.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fbcea605d7a1bd5b475de2ae6136a932585d82c3fcfee5a05ccc0372acb31f30
MD5 fe6b72e0b66e07642093fe21279b5881
BLAKE2b-256 27f7b64c9dad75d70c5f4fca14798e772492ffded80193b27ed701ccdff43c4a

See more details on using hashes here.

File details

Details for the file smartredis-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3deed1c38c0c51dfc9132d04fecc1dc5d20ee1545ed542e1bbfe675cb9088fba
MD5 4e807ec3ff17c1a94078e44c6daf9f17
BLAKE2b-256 84ff0677344f31f0f621a501db7abf7d67df7e62019b15953d7a6a48f8b3be0d

See more details on using hashes here.

File details

Details for the file smartredis-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b93b9cf2a498505501f590b3dcd68d37ea983ea7eb700032d94b91161fda8e1
MD5 5ec19285f42e4484447a2b2766e888f8
BLAKE2b-256 4b9a3beabcd2dafd6e5a492a9d6ca69c6250d93ee9f0027c554a6e880f7ecf1b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page