Skip to main content

Sequential MAppers for Sequences of HEterogeneous Dictionaries

Project description

Colorful logo of smashed. It is the word smashed written in a playful font that vaguely looks like pipes.

Sequential MAppers for Sequences of HEterogeneous Dictionaries is a set of Python interfaces designed to apply transformations to samples in datasets, which are often implemented as sequences of dictionaries.

Example of Usage

Mappers are initialized and then applied sequentially. In the following example, we create a mapper that is applied to a samples, each containing a sequence of strings. The mappers are responsible for the following operations.

  1. Tokenize each sequence, cropping it to a maximum length if necessary.
  2. Stride sequences together to a maximum length or number of samples.
  3. Add padding symbols to sequences and attention masks.
  4. Concatenate all sequences from a stride into a single sequence.
import transformers
from smashed.mappers import (
    TokenizerMapper,
    MultiSequenceStriderMapper,
    TokensSequencesPaddingMapper,
    AttentionMaskSequencePaddingMapper,
    SequencesConcatenateMapper,
)

tokenizer = transformers.AutoTokenizer.from_pretrained(
    pretrained_model_name_or_path='bert-base-uncased',
)

mappers = [
    TokenizerMapper(
        input_field='sentences',
        tokenizer=tokenizer,
        add_special_tokens=False,
        truncation=True,
        max_length=80
    ),
    MultiSequenceStriderMapper(
        max_stride_count=2,
        max_length=512,
        tokenizer=tokenizer,
        length_reference_field='input_ids'
    ),
    TokensSequencesPaddingMapper(
        tokenizer=tokenizer,
        input_field='input_ids'
    ),
    AttentionMaskSequencePaddingMapper(
        tokenizer=tokenizer,
        input_field='attention_mask'
    ),
    SequencesConcatenateMapper()
]

dataset = [
    {
        'sentences': [
            'This is a sentence.',
            'This is another sentence.',
            'Together, they make a paragraph.',
        ]
    },
    {
        'sentences': [
            'This sentence belongs to another sample',
            'Overall, the dataset is made of multiple samples.',
            'Each sample is made of multiple sentences.',
            'Samples might have a different number of sentences.',
            'And that is the story!',
        ]
    }
]

for mapper in mappers:
    dataset = mapper.map(dataset)

print(len(dataset))

# >>> 5

print(dataset[0])

# >>> {
#    'input_ids': [
#        101,
#        2023,
#        2003,
#        1037,
#        6251,
#        1012,
#        102,
#        2023,
#        2003,
#        2178,
#        6251,
#        1012,
#        102
#    ],
#    'attention_mask': [
#        1,
#        1,
#        1,
#        1,
#        1,
#        1,
#        1,
#        1,
#        1,
#        1,
#        1,
#        1,
#        1
#    ]
# }

Building a Pipeline

Mappers can also be composed into a pipeline using the >> (or <<) operator. For example, the code above can be rewritten as follows:

pipeline = TokenizerMapper(
    input_field='sentences',
    tokenizer=tokenizer,
    add_special_tokens=False,
    truncation=True,
    max_length=80
) >> MultiSequenceStriderMapper(
    max_stride_count=2,
    max_length=512,
    tokenizer=tokenizer,
    length_reference_field='input_ids'
) >> TokensSequencesPaddingMapper(
    tokenizer=tokenizer,
    input_field='input_ids'
) >> AttentionMaskSequencePaddingMapper(
    tokenizer=tokenizer,
    input_field='attention_mask'
) >> SequencesConcatenateMapper()

dataset = ...

# apply the full pipeline to the dataset
pipeline.map(dataset)

Dataset Interfaces Available

The initial version of SMASHED supports two interfaces for dataset:

  1. interfaces.simple.Dataset: A simple dataset representation that is just a list of python dictionaries with some extra convenience methods to make it work with SMASHED. You can crate a simple dataset by passing a list of dictionaries to interfaces.simple.Dataset.
  2. HuggingFace datasets library. SMASHED mappers work with any datasets from HuggingFace, whether it is a regular or iterable dataset.

Developing SMASHED

To contribute to SMASHED, make sure to:

  1. (If you are not part of AI2) Fork the repository on GitHub.
  2. Clone it locally.
  3. Create a new branch in for the new feature.
  4. Install development dependencies with pip install -r dev-requirements.txt.
  5. Add your new mapper or feature.
  6. Add unit tests.
  7. Run tests, linting, and type checking from the root directory of the repo:
    1. Style: black . (Should format for you)
    2. Style: flake8 . (Should return no error)
    3. Style: isort . (Should sort imports for you)
    4. Static type check: mypy . (Should return no error)
    5. Tests: pytest -v --color=yes tests/ (Should return no error)
  8. Commit, push, and create a pull request.
  9. Tag soldni to review the PR.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smashed-0.1.8.tar.gz (29.4 kB view details)

Uploaded Source

Built Distribution

smashed-0.1.8-py3-none-any.whl (33.6 kB view details)

Uploaded Python 3

File details

Details for the file smashed-0.1.8.tar.gz.

File metadata

  • Download URL: smashed-0.1.8.tar.gz
  • Upload date:
  • Size: 29.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for smashed-0.1.8.tar.gz
Algorithm Hash digest
SHA256 e172cf29aa42b7b7400684d6f6eec7c4ec47acb2412703441c9dcf14d133a30b
MD5 875d49e5ea0aadd8af2749adfb573051
BLAKE2b-256 defd4fe252f5ac98fdb38fbe3ef198fb5fe09bf0b3a499734fcfa513686d99aa

See more details on using hashes here.

File details

Details for the file smashed-0.1.8-py3-none-any.whl.

File metadata

  • Download URL: smashed-0.1.8-py3-none-any.whl
  • Upload date:
  • Size: 33.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for smashed-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 9f8f6859f29419b2de063da1be33d2d3650c01f421d5e70ada5cde029f33b238
MD5 aa15f909cd34ef079786b2c2af43d51d
BLAKE2b-256 8877d2cc68588c6a949eec8ab06a42a2fffd83dcf161d7cb27bf21030841137e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page