Skip to main content

Autoencoders for SMILES strings

Project description

smiles-autoencoder

GitHub version PyPI version GitHub License

LSTM-based autoencoders for SMILES strings

Installation

$ pip install smiles-autoencoder

or

$ git clone https://gitlab.com/tjkessler/smiles-autoencoder
$ cd smiles-autoencoder
$ pip install .

Usage

One-hot encoding

from smiles_autoencoder.encoding import SmilesEncoder


smiles: List[str] = [...]

encoder = SmilesEncoder()
encoder.fit(smiles)

encoded_smiles: numpy.ndarray = encoder.encode_many(smiles)
# encoded_smiles.shape == (n_smiles_strings, sequence_length, n_unique_characters)

Autoencoding

import torch
import torch.nn as nn

from smiles_autoencoder.model import LSTMAutoencoder


encoded_smiles = torch.tensor(encoded_smiles, dtype=torch.float32)

autoencoder = LSTMAutoencoder(
    input_size=encoded_smiles.shape[2],
    hidden_size=64,
    latent_size=12,
    num_lstm_layers=1
)

opt = torch.optim.Adam(autoencoder.parameters(), lr=0.001)
loss_crit = nn.L1Loss(reduction="sum")

for epoch in range(8):

    for enc_smiles in encoded_smiles:

        opt.zero_grad()
        pred = autoencoder(enc_smiles)
        loss = loss_crit(pred, enc_smiles)
        loss.backward()
        opt.step()

Decoding predictions

pred_smiles: torch.Tensor = autoencoder(encoded_smiles[0])
pred_smiles: str = encoder.decode(torch.round(pred_smiles).detach().numpy().astype(int))

Contributing, Reporting Issues and Other Support:

To contribute to smiles-autoencoder, make a pull request. Contributions should include tests for new features added, as well as extensive documentation.

To report problems with the software or feature requests, file an issue. When reporting problems, include information such as error messages, your OS/environment and Python version.

For additional support/questions, contact Travis Kessler (travis.j.kessler@gmail.com).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smiles_autoencoder-0.0.1.tar.gz (16.0 kB view details)

Uploaded Source

Built Distribution

smiles_autoencoder-0.0.1-py3-none-any.whl (16.6 kB view details)

Uploaded Python 3

File details

Details for the file smiles_autoencoder-0.0.1.tar.gz.

File metadata

  • Download URL: smiles_autoencoder-0.0.1.tar.gz
  • Upload date:
  • Size: 16.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for smiles_autoencoder-0.0.1.tar.gz
Algorithm Hash digest
SHA256 b9c71cb93fc9ef82033959460007e999609e8f2592b743169296fb10e110b4b1
MD5 5dd0ca923d1b2a19c379ecdee363e8aa
BLAKE2b-256 8813d7508dc8eecba87a34e9c59b89b6b8d2750800f195c495b2fe2fc87684ee

See more details on using hashes here.

File details

Details for the file smiles_autoencoder-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for smiles_autoencoder-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 69ea74cf0a620fbe411ae9e1859eac616150f0b181e59d01593020aa3f40beb6
MD5 798fe2ea434b228ba31ab31474dc0171
BLAKE2b-256 c94b200f92f37f9486d1a64e5d57462c92c06ac4c22349ecffbd4059d8878f8a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page