Skip to main content

A tool for computing the Smith Normal Forms over arbitrary Principle Ideal Domains

Project description

Build Status PyPI - Python Version PyPI version Coverage Status

Generalized Python Smith Normal Form

This project is a python package implementing the calculation of smith normal forms (SNFs) for matrices defined over arbitrary principal ideal domains.

Currently, this SNF library can calculate the SNF of matrices over either the integers or the Gaussian integers. Additionally it can be easily extended to any principal ideal domain.

While there appear to be several open source Smith Normal Form implementations in a variety of programming languages, many of these implementations only operate on the integers. This is, to our knowledge, the only open source Smith Normal Form calculator that operates over the generalized class of principal ideal domains.

What are Principal Ideal Domains?

Principal ideal domains are integral domains (rings that behave like the integers) where every ideal is a principal ideal. Speaking more generally, PIDs are a class of mathematical structures that are more structured than a commutative ring, but not necessarily as structured as a field. Two items in a PID will always have a greatest common denominator (although this GCD is not always easy to compute) and they will always have a unique factorization. Elements of a PID do not necessarily have inverses, which is why they are considered less structured than a field.

Some examples of PIDs include:

  • integers
  • Gaussian integers
  • fields (finite fields, rational numbers, real numbers, complex numbers)
  • single variable polynomials over a field

What is the Smith Normal Form of a matrix?

The Smith Normal form of a matrix is canonical way to represent a matrix defined over a PID. The smith normal form of a matrix A is a matrix J such that:

  • all non-diagonal elements of J are zero
  • along the diagonal of J, every element divides evenly into its predecessor until a zero is encountered and then all future diagonal elements are zero
  • there exists unimodular matrices S and T such that S*A*T = J.

As an example if the matrix A is

A = [ 1 2 3 ]
    [ 4 5 6 ],

the Smith Normal Form of this matrix would be

J = [ 1 0 0 ]
    [ 0 3 0 ]

with complementary matrices

S = [ 1  0 ]
    [ 4 -1 ]

and

T = [ 1 -1  1 ]
    [ 0 -1 -2 ]
    [ 0  1  1 ].

Example Usage

The following is an example of how to set up a Smith Normal Form problem over the integers, run the computation, and interpret the results.

>>> from smithnormalform import matrix, snfproblem, z
>>> original_matrix = matrix.Matrix(2, 2, [z.Z(1), z.Z(2), z.Z(3), z.Z(4)])
>>> prob = snfproblem.SNFProblem(original_matrix)
>>> prob.computeSNF()
>>> print(prob.isValid())
True
>>> print(prob.A)
[ 1 2 ]
[ 3 4 ]
>>> print(prob.J)
[ -2 1 ]
[ 3 -1 ]
>>> print(prob.S * prob.A * prob.T == prob.J)
True

Adding New Principal Ideal Domains

The Smith Normal Form algorithm can be run on any subclass of the principal ideal domain class smithnormalform.pid.PID. In order to subclass PID, you will need to define several basic operations that are well defined on PIDs such as addition, multiplication, division, negation, and GCD.

Since every PID is a GCD Domain, greatest common divisor is a well defined operation for two elements of PID. Just because GCD is well-defined, however, does not mean it is easy (or even tractable) to compute. One way to find the GCD of two elements is the Euclidean algorithm; however, the Euclidean algorithm can only be applied to Euclidean domains. While all Euclidean domains are PIDs, not all PIDs are Euclidean domains.

This leaves us in an unfortunate position. While the Smith Normal Form algorithm implemented here is efficient in-and-of-itself and works for all PIDs, it is only efficient if GCD can be computed efficiently, which is not generally speaking true for all PIDs.

We resolve this conflict in the following way: We provide an abstract class for Euclidean domains (smithnormalform.ed.ED) that implements the euclidean algorithm for you. Extending this class requires you define a norm for your Euclidean domain; however, once you do so the GCD function required for PIDs will be completed for you without you needing to implement the Euclidean algorithm for yourself.

If you would like to run this algorithm on a PID that is not a Euclidean domain, you can extend the PID class smithnormalform.pid.PID directly, bypassing the Euclidean domain class. Doing this will require you to implement the GCD function directly. Please note that GCDs are requested frequently during the Smith Normal Form calculation so if the GCD function isn't efficient the Smith Normal Form computation may be intractable.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smithnormalform-0.6.0.tar.gz (15.5 kB view details)

Uploaded Source

Built Distribution

smithnormalform-0.6.0-py3-none-any.whl (28.7 kB view details)

Uploaded Python 3

File details

Details for the file smithnormalform-0.6.0.tar.gz.

File metadata

  • Download URL: smithnormalform-0.6.0.tar.gz
  • Upload date:
  • Size: 15.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for smithnormalform-0.6.0.tar.gz
Algorithm Hash digest
SHA256 7cfdcc5e9666394cc5304ef6b712fec3483b9b40afe2d2407f042e50f6792eca
MD5 9e9ca33ddd9366e6ef6befbbb0e7e50a
BLAKE2b-256 c10444df3dd7eedb4f22d36bd71050313f5259786e3570100fa55f8e1d12344a

See more details on using hashes here.

File details

Details for the file smithnormalform-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: smithnormalform-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 28.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.7

File hashes

Hashes for smithnormalform-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 492d05230733002d592b8f66fd54e29c6ae7b135de12005c9d4bec784983b110
MD5 731bb732c955bd81e736c9c5256c9961
BLAKE2b-256 a4c4d46011b9bbad7c943dfeb7eb29243cb3f9b2014b00b7010c9f7455eae985

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page