Skip to main content

Lighthweight but caffeinated Python implementation of computational methods for statistical mechanical calculations of configurational states in crystalline material systems.

Project description

Statistical Mechanics on Lattices

test Codacy Badge pre-commit.ci status pypi version python versions Binder

Lightweight but caffeinated Python implementation of computational methods for statistical mechanical calculations of configurational states in crystalline materials.


smol is a minimal implementation of computational methods to calculate statistical mechanical and thermodynamic properties of crystalline material systems based on the cluster expansion method from alloy theory and related methods. Although smol is intentionally lightweight---in terms of dependencies and built-in functionality---it has a modular design that closely follows underlying mathematical formalism and provides useful abstractions to easily extend existing methods or implement and test new ones.

Functionality

smol currently includes the following functionality:

  • Defining cluster expansion functions for a given disordered structure using a variety of available site basis functions with and without explicit redundancy.
  • Option to include explicit electrostatics in expansions using the Ewald summation method.
  • Computing correlation vectors for a set of training structures with a variety of functionality to inspect the resulting feature matrix.
  • Defining fitted cluster expansions for subsequent property prediction.
  • Fast evaluation of correlation vectors and differences in correlation vectors from local updates in order to quickly compute properties and changes in properties for specified supercell sizes.
  • Flexible toolset to sample cluster expansions using Monte Carlo with Canonical and Semigrand Canonical ensembles using a Metropolis sampler.

smol is built on top of pymatgen so any pre/post structure analysis can be done seamlessly using the various functionality supported there.

Installation

From pypi:

pip install smol

From source:

Clone the repository. The latest tag in the main branch is the stable version of the code. The main branch has the newest tested features, but may have more lingering bugs. From the top level directory

pip install .

Although smol is not tested on Windows platforms, it should still run on Windows since there aren't any platform specific dependencies. The only known installation issue is building pymatgen dependencies. If simply running pip install smol fails, try installing pymatgen with conda first:

conda install -c conda-forge pymatgen
pip install smol

You can also simply use the environment.yml file in the repository to install smol:

conda env create -f environment.yml
source activate smol-env

Usage

Refer to the documentation for details on using smol. Going through the example notebooks will also help you get started. You can run the example notebooks interactively in binder.

Contributing

We welcome all your contributions with open arms! Please fork and pull request any contributions. See the developing section in the documentation for how to contribute.

Changes

The most recent changes are detailed in the change log.

Copyright Notice

Statistical Mechanics on Lattices (smol) Copyright (c) 2022, The Regents
of the University of California, through Lawrence Berkeley National
Laboratory (subject to receipt of any required approvals from the U.S.
Dept. of Energy) and the University of California, Berkeley. All rights reserved.

If you have questions about your rights to use or distribute this software,
please contact Berkeley Lab's Intellectual Property Office at
IPO@lbl.gov.

NOTICE.  This Software was developed under funding from the U.S. Department
of Energy and the U.S. Government consequently retains certain rights.  As
such, the U.S. Government has been granted for itself and others acting on
its behalf a paid-up, nonexclusive, irrevocable, worldwide license in the
Software to reproduce, distribute copies to the public, prepare derivative
works, and perform publicly and display publicly, and to permit others to do so.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smol-0.0.7.tar.gz (8.8 MB view details)

Uploaded Source

Built Distributions

smol-0.0.7-cp311-cp311-win_amd64.whl (178.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

smol-0.0.7-cp311-cp311-win32.whl (167.1 kB view details)

Uploaded CPython 3.11 Windows x86

smol-0.0.7-cp311-cp311-musllinux_1_1_x86_64.whl (575.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

smol-0.0.7-cp311-cp311-musllinux_1_1_i686.whl (545.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

smol-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (559.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

smol-0.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (546.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

smol-0.0.7-cp311-cp311-macosx_10_9_x86_64.whl (192.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

smol-0.0.7-cp310-cp310-win_amd64.whl (178.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

smol-0.0.7-cp310-cp310-win32.whl (167.7 kB view details)

Uploaded CPython 3.10 Windows x86

smol-0.0.7-cp310-cp310-musllinux_1_1_x86_64.whl (561.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

smol-0.0.7-cp310-cp310-musllinux_1_1_i686.whl (534.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

smol-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (543.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

smol-0.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (529.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

smol-0.0.7-cp310-cp310-macosx_10_9_x86_64.whl (194.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

smol-0.0.7-cp39-cp39-win_amd64.whl (179.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

smol-0.0.7-cp39-cp39-win32.whl (168.5 kB view details)

Uploaded CPython 3.9 Windows x86

smol-0.0.7-cp39-cp39-musllinux_1_1_x86_64.whl (568.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

smol-0.0.7-cp39-cp39-musllinux_1_1_i686.whl (540.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

smol-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (550.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

smol-0.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (536.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

smol-0.0.7-cp39-cp39-macosx_10_9_x86_64.whl (194.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

smol-0.0.7-cp38-cp38-win_amd64.whl (179.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

smol-0.0.7-cp38-cp38-win32.whl (168.4 kB view details)

Uploaded CPython 3.8 Windows x86

smol-0.0.7-cp38-cp38-musllinux_1_1_x86_64.whl (585.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

smol-0.0.7-cp38-cp38-musllinux_1_1_i686.whl (556.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

smol-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (557.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

smol-0.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (544.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

smol-0.0.7-cp38-cp38-macosx_10_9_x86_64.whl (192.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file smol-0.0.7.tar.gz.

File metadata

  • Download URL: smol-0.0.7.tar.gz
  • Upload date:
  • Size: 8.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for smol-0.0.7.tar.gz
Algorithm Hash digest
SHA256 e63b0c4f0f3b957254c98cf2020b63946913340c7b36d9f406982eac76b09356
MD5 602d5f82ac37fbca39e2501eb41275dd
BLAKE2b-256 611057f8c531c7c7cc62ff2aa88892110abf4a037d5a0419713bb21cd39ffc06

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: smol-0.0.7-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 178.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for smol-0.0.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c9591ca01d9cfb93597d8ea848ded3f162a3c268dbc471eb97387f0a26d4d262
MD5 542f8f505d03ec80b0b49b98df30d63a
BLAKE2b-256 63182707373dcfade84b278e1f6b0340d2b65c21c18f528d9f4fa64912b25a9e

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp311-cp311-win32.whl.

File metadata

  • Download URL: smol-0.0.7-cp311-cp311-win32.whl
  • Upload date:
  • Size: 167.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for smol-0.0.7-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 0e8b6e6d697b1fca0f233a19efa87b0d1829f7da3c78eaf3c8e0066bf3704663
MD5 85db3d69d7372dc6d07c3902bda23407
BLAKE2b-256 d25364e5baac49adc2aacd34be03493d208d767d34110805c60feee8406c2cfe

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8812dc5204daa06cc272f44c7d251911e8d3e12bd8c93b68d0da53fb191e9787
MD5 95cacd23da236d0aaab9d4574d8367d2
BLAKE2b-256 11974ff9241a05e55d1462854429fa41efc24753d0367675599e5331c54ed1e0

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 93126a2ff0d7513994e137038844182ef822340082c62fbe74b32f2d865d9244
MD5 6330c8f609894d4c59d69734c0915726
BLAKE2b-256 4941ffe1276e583c8683b936fa27de96ce1cead4fd0c6c271bfdbaafdaa01cd2

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49d0587adca0a4bf4914b4d22fb9ea8dea41269cf5e59aecf6a1e060d46f5546
MD5 fd82127f69a294da4f6dcbe0d44d184a
BLAKE2b-256 b52463f1b85f99ce58084302f3db888422723e6c7641466d899a60ded4a07297

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cf84f8da9bfd044832e3a7a473a900222104d2945dfa3f39410352edb68e898a
MD5 999110d5fbd7dcf54ec6c76c5adb0b11
BLAKE2b-256 75ee45d28a6534c4ed6033f035bde135376d035c76976afbe9f635f5bd69dbd8

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4e116ebffcf98ec3bbb2ac4f64e072e05f27980f0258a1e014cec9db1d6f0e23
MD5 f46df03e5253e14b7fabb7624e8d63d5
BLAKE2b-256 2ce932f082795d57161c5af947f24f94aaa3cb1aa96615466665e46cad424f77

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: smol-0.0.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 178.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for smol-0.0.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9da9fc2a305550a5ab07434873f2a53a8e83d75d153f85e701062707d8dd7613
MD5 3c1ff1419566c408cb106bc30d5bb427
BLAKE2b-256 759a1e2fc50c7429ade90888ca86484f4d72a0c93bcc730ee6bbe88846d76e22

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp310-cp310-win32.whl.

File metadata

  • Download URL: smol-0.0.7-cp310-cp310-win32.whl
  • Upload date:
  • Size: 167.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for smol-0.0.7-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f3b30d39b1bd4d75a993063bd13579a39a17f0a0189020ce1a0a02bb7cc59268
MD5 1cbe8d6ba9e00e6c9b8dfc3fb6a65bc6
BLAKE2b-256 8fc9787f7fb5c08d23a9ef58ef7b88f4aeeadd414d05d7b70cee8d8c07ffa97a

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8bc014103060b0a4c59689f31202db50922b75d3b593e59345667d4528ce4fc2
MD5 cce1c73e2798d128ce85b9156c58922b
BLAKE2b-256 52929590ed220f4a1857ffc0328d4f858f1d43079022c3f215b8b3e2481f5647

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c549fcebda512c13a3975f1e4eea32d8b4e1d6914c1efaaae5cddf26b5ad0fe4
MD5 e0cb81b7adb7facef3aac6f36605fe6f
BLAKE2b-256 e48d25fa533b0bcb1a1604385bff9208e4a35929a5308a5e30dc3891f26fe6a7

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa83834983986bf82dca4e024b807891298c6f15074718a9f9fbd4942c4d0153
MD5 135ce76b3156253013eeb635920e318c
BLAKE2b-256 410054986b8c399deeb0636a5157c8158017caca01bf49c07b3854cda91d131c

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f6879291aeb1f678a66affa5c67a581649f629e0ede3608511f3eca0e52b0545
MD5 921fb6427fc0e4ffa20feb65173b2813
BLAKE2b-256 dd59b48453c15374ff72eabd748c971aa6255b6903e2efc2eb02fd14fcb18b1e

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d14681c6e92b0ab77fc96b329787940a17585f9f507405cf8bb32925502a6e55
MD5 f3ac9ac57508e6532b133094e325b6e5
BLAKE2b-256 66f1c93a2b7ad476a884fde9e4c4aaeb64f56d608e9ed21442671112edce3955

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: smol-0.0.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 179.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for smol-0.0.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 26385339a869ab3f6173fd50536d6814b1d9c91950ee8be119c843dd1c8af24a
MD5 4abdeb12e3ee18e70f9cc4249e7574d3
BLAKE2b-256 ce841442c7c43d6dd3a1f92afb97af098c5b248b4dfc588e8f33f33ab07256bc

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp39-cp39-win32.whl.

File metadata

  • Download URL: smol-0.0.7-cp39-cp39-win32.whl
  • Upload date:
  • Size: 168.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for smol-0.0.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 05c9c5d0fd8f5c415da90b55daaf4eb9fbfd87d57f8c06f9cc03a3984ee3944c
MD5 390a31062640d15d32e2de0dafb5c40b
BLAKE2b-256 a0fe79363cc43afff3ba2ab3b3f0ede1fcbd2d0d27d5e1a96d23d0d86304513b

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 235ad571767ff7f303c46762ad6f972001190f466f1693c1f0451562c160c1f2
MD5 a20090e87fb796e66ea1a4fb65bc9644
BLAKE2b-256 060dfa066ce4aff4604fdbaac30c5081eef8a7402b81e1cb1c597ba47491f07c

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 891fd0689b9a93e342490ac7f270f19498a19b3e0266ee16731eabd9bb633ab8
MD5 497b500eea738246a70373184514c90c
BLAKE2b-256 6c08e1c45cdc305141b0887e10847481dd666ce361e03f2db570a6531569345d

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b5a09ef23bdb63856a1fcaf78cef956de20e94e808d65f3ee20932045d02069b
MD5 3f94150ffee02c378b3d5626bf7501cc
BLAKE2b-256 c9e419a963e60224ac7a98527ed301717c04b2657d8a16acd80328a414a5d5aa

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 096ed173a58a2213cfa55ea1f307f266254fd9f519a27561f1dd5d7ba45451dc
MD5 cd560a34ad30be41ef326f18890a1fcb
BLAKE2b-256 9067daf3f4f36d9b3b68356696e00a0c50d34ef2beeb09fd030ce5ba24ae86d1

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 562bec0d11e344c42bf00ce329dadb80f882d0fbf039139afccad136190196c5
MD5 7353644bcc4150a7a2d6ceaf64c02cba
BLAKE2b-256 db4038cc4e553c69b53c88c82185049b39dd4b1cb00ede5b7bc9b26c112c8a57

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: smol-0.0.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 179.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for smol-0.0.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d128783ca1262ef36a822a7300527088c23b5ec77d5d7c555235a90ac58c9161
MD5 e547a00cf4fdab4eedcf713a75278f90
BLAKE2b-256 492405ab8091703134e3ed881eb5be496193d9e6bcbf7e82cef0903639cb2b20

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp38-cp38-win32.whl.

File metadata

  • Download URL: smol-0.0.7-cp38-cp38-win32.whl
  • Upload date:
  • Size: 168.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for smol-0.0.7-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 3eab5ca3e2d25b2aa889bf1b1b6ae97c1e139ce7b4249a61eac59eaa799983d4
MD5 b539b8ca94bd44416643142ea892de01
BLAKE2b-256 f16f650c7ad2499ce4dbeb53734100d121a07431ac9fa89f7c19a022d86c2c2f

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d2f4a637cc7a39d0a71804720bbc7b3abc2dfd38235e5f78fa3ddfb47d8cb8ab
MD5 13b4dd697addb4278d72d5b0ed9bf639
BLAKE2b-256 2f079018c717034931020c933f9bbb88c681e2151f6144b613650bc8bf31c37a

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 24654036af067004f407bfe09d96a0159505b6632d89a546c8bae249cc2cb9b5
MD5 a1d1b6e7747121c02dbe9f7a468604e4
BLAKE2b-256 cf0ade494fb961f8463f94f7c16e76a525c306d80a78bbc608fa7204104ac8c4

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 03182b67314e07b2315b346b5e3a007fb4e669b3a58ee984b40797892582eb4e
MD5 b802a5d3ef742687979df9e3d6ede0b4
BLAKE2b-256 95976e4f47176244f94f18128fb985009c586ddb83a842dc0bc11ce97b733bc8

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8b891affe3b61a723e98845f0359b9733c95ad20c141718c138e2e384cf53ad7
MD5 ebedbea48309faf329b6d6470ed94f1d
BLAKE2b-256 e7984672c1140f3ea299f81c3f0d6ec53412f70ee1749fa306538d661d08aa24

See more details on using hashes here.

File details

Details for the file smol-0.0.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.0.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 abd1a5f45a0708b26bafef69731f8616da38cc504135469e5e514c6278bb4989
MD5 a314416a11cba1223fb82c9e844fa832
BLAKE2b-256 5acfe08e384ef12bcc23368ad3f3de1faff0911c0baa4edf6fc9189d9b991043

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page