Skip to main content

Lighthweight but caffeinated Python implementation of computational methods for statistical mechanical calculations of configurational states in crystalline material systems.

Project description

Statistical Mechanics on Lattices

test Codacy Badge pre-commit.ci status pypi version python versions Binder status

Lightweight but caffeinated Python implementation of computational methods for statistical mechanical calculations of configurational states in crystalline materials.


smol is a minimal implementation of computational methods to calculate statistical mechanical and thermodynamic properties of crystalline material systems based on the cluster expansion method from alloy theory and related methods. Although smol is intentionally lightweight---in terms of dependencies and built-in functionality---it has a modular design that closely follows underlying mathematical formalism and provides useful abstractions to easily extend existing methods or implement and test new ones.

Functionality

smol currently includes the following functionality:

  • Defining cluster expansion functions for a given disordered structure using a variety of available site basis functions with and without explicit redundancy.
  • Option to include explicit electrostatics in expansions using the Ewald summation method.
  • Computing correlation vectors for a set of training structures with a variety of functionality to inspect the resulting feature matrix.
  • Defining fitted cluster expansions for subsequent property prediction.
  • Fast evaluation of correlation vectors and differences in correlation vectors from local updates in order to quickly compute properties and changes in properties for specified supercell sizes.
  • Flexible toolset to sample cluster expansions using Monte Carlo with canonical, semigrand canonical, and charge neutral semigrand canonical ensembles using a Metropolis or a Wang-Landau sampler.

smol is built on top of pymatgen so any pre/post structure analysis can be done seamlessly using the various functionality supported there.

Installation

From pypi:

pip install smol

From source:

Clone the repository. The latest tag in the main branch is the stable version of the code. The main branch has the newest tested features, but may have more lingering bugs. From the top level directory

pip install .

Although smol is not tested on Windows platforms, it should still run on Windows since there aren't any platform specific dependencies. The only known installation issue is building pymatgen dependencies. If simply running pip install smol fails, try installing pymatgen with conda first:

conda install -c conda-forge pymatgen
pip install smol

You can also simply use the environment.yml file in the repository to install smol:

conda env create -f environment.yml
source activate smol-env

Usage

Refer to the documentation for details on using smol. Going through the example notebooks will also help you get started. You can run the example notebooks interactively in binder.

Citing

If you use smol in your research, please give the repo a star :star: and refer to the citing page in the documentation for formal citation information.

Contributing

We welcome all your contributions with open arms! Please fork and pull request any contributions. See the developing page in the documentation for how to contribute.

Changes

The most recent changes are detailed in the change log.

Copyright Notice

Statistical Mechanics on Lattices (smol) Copyright (c) 2022, The Regents
of the University of California, through Lawrence Berkeley National
Laboratory (subject to receipt of any required approvals from the U.S.
Dept. of Energy) and the University of California, Berkeley. All rights reserved.

If you have questions about your rights to use or distribute this software,
please contact Berkeley Lab's Intellectual Property Office at
IPO@lbl.gov.

NOTICE.  This Software was developed under funding from the U.S. Department
of Energy and the U.S. Government consequently retains certain rights.  As
such, the U.S. Government has been granted for itself and others acting on
its behalf a paid-up, nonexclusive, irrevocable, worldwide license in the
Software to reproduce, distribute copies to the public, prepare derivative
works, and perform publicly and display publicly, and to permit others to do so.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smol-0.3.1.tar.gz (9.6 MB view details)

Uploaded Source

Built Distributions

smol-0.3.1-cp311-cp311-win_amd64.whl (209.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

smol-0.3.1-cp311-cp311-win32.whl (200.0 kB view details)

Uploaded CPython 3.11 Windows x86

smol-0.3.1-cp311-cp311-musllinux_1_1_x86_64.whl (610.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

smol-0.3.1-cp311-cp311-musllinux_1_1_i686.whl (578.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

smol-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (597.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

smol-0.3.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (580.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

smol-0.3.1-cp311-cp311-macosx_10_9_x86_64.whl (220.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

smol-0.3.1-cp310-cp310-win_amd64.whl (210.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

smol-0.3.1-cp310-cp310-win32.whl (200.9 kB view details)

Uploaded CPython 3.10 Windows x86

smol-0.3.1-cp310-cp310-musllinux_1_1_x86_64.whl (595.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

smol-0.3.1-cp310-cp310-musllinux_1_1_i686.whl (564.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

smol-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (580.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

smol-0.3.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (565.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

smol-0.3.1-cp310-cp310-macosx_10_9_x86_64.whl (222.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

smol-0.3.1-cp39-cp39-win_amd64.whl (211.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

smol-0.3.1-cp39-cp39-win32.whl (201.8 kB view details)

Uploaded CPython 3.9 Windows x86

smol-0.3.1-cp39-cp39-musllinux_1_1_x86_64.whl (600.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

smol-0.3.1-cp39-cp39-musllinux_1_1_i686.whl (569.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

smol-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (586.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

smol-0.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (571.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

smol-0.3.1-cp39-cp39-macosx_10_9_x86_64.whl (222.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

smol-0.3.1-cp38-cp38-win_amd64.whl (211.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

smol-0.3.1-cp38-cp38-win32.whl (201.7 kB view details)

Uploaded CPython 3.8 Windows x86

smol-0.3.1-cp38-cp38-musllinux_1_1_x86_64.whl (617.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

smol-0.3.1-cp38-cp38-musllinux_1_1_i686.whl (585.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

smol-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (591.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

smol-0.3.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (579.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

smol-0.3.1-cp38-cp38-macosx_10_9_x86_64.whl (220.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file smol-0.3.1.tar.gz.

File metadata

  • Download URL: smol-0.3.1.tar.gz
  • Upload date:
  • Size: 9.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for smol-0.3.1.tar.gz
Algorithm Hash digest
SHA256 328411e04fb9582c7bf63187b23b38125a840534372493eea90ffe75a5fc45c5
MD5 1d3746c353de121788c83bb411fa0044
BLAKE2b-256 f6bbe24df26dffa7a0ff3df2377b68a40cc50ab03e752a214f56ef05ef0bc3d7

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: smol-0.3.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 209.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for smol-0.3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0f096a0afc451b5ca342dd46380190755d61bee8c86dd75a57334d9dd8adfa38
MD5 3a847d4d1bf88604939f2891fb6e587d
BLAKE2b-256 4783ef1a89130c53650cef1d05301a67946e33cf08500ae4631be6a22f4e5a3c

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: smol-0.3.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 200.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for smol-0.3.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 60bc06a2524fdb4cb4f9b49560a07a05668a51536100bed77614469c2f3983de
MD5 94a590e6c6cd856141414ca9bf1309bc
BLAKE2b-256 7bb6d7310eafcd07ad763853598e5b757d5f92153f2162e8072f9e7f0ecd5b31

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ad2e2dff37a510fc046e929d306e2ca9ff8c80ed737a954c10726fdeb5aa2e0c
MD5 cc44b2bd2b4f9e684d01bca01d660926
BLAKE2b-256 39fa245d2f1b13c930884609b9ae2c898023dd04d94c76979506238a4fcf26ed

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 26db32bedda686ed64d26f0d0ed08443af4c13e13cd5b67b0f7b784525ba0878
MD5 4be289dc79f0fe5bf3efe4ac3669d4d3
BLAKE2b-256 78c0c61dd478b615b140a6f06bd138d611f33d7558c1222e176535a8b6c5d085

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b2cdd8799942f6c3a54b8e890c4ec7d25834ece853e6841b4608c978b8cecc3
MD5 4584d602bd1741cfd94ad7286a6068a7
BLAKE2b-256 5ff9026eaa3429f20af59485b1469290ca7592e8b078548b0c4319eaf593d13b

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6a1f0de1e12b469ad740f580b80edcf14e1ca845c3a3d33732382a8d5bd00a63
MD5 3bfef43ddaf56c64b0a72dbd5cb77aee
BLAKE2b-256 9d917731577bbfb709a44c1649cd3d9e7a9775b97737a9fb270e3899420b1de9

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ffbe1e627eaaeb79eb74fe29e5c46be8656c8798deb4c5fc0b0a9859cceb04ca
MD5 a40993bd7c90599406700d7da7305b97
BLAKE2b-256 8b1765d3e15a7e21509152450e7ae5205cebb25cd46a045e761aa77aa3dfedfb

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: smol-0.3.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 210.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for smol-0.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e381822abfb7fe0a2e44da8e85c4ac68947657d5a0b877abf98e9e878fa0c5ac
MD5 545671c30ea5e910929506fda3fbfbd3
BLAKE2b-256 572b7cd874bd721d3da9bdce5e3369495136d34c29e263017745d7b8db93b606

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: smol-0.3.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 200.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for smol-0.3.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2c05cc4958f307b5d90041bc5c63e89eff4a19ea5a5f03e8a3d0c56ecb0ab1d7
MD5 e2ef00d53cb22a4b277d3ba8a6ba1cbe
BLAKE2b-256 0d071d95ef8f16df26cda1f29c8e899dc00163b5b44ec19f395359b11ad812fa

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d8e7f1b750612ef1b4d62591cb4632b99b4b7427ac5659bd1e4690ca9d1b1943
MD5 2a454b91c6edb342b9890bd9fd577aaf
BLAKE2b-256 f7b74d1e9a399887a36ef7f3b0ef5cd4c085e7d41247503eca28c902c85cba2c

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6e0ec217a660b86fe2ab7208d337a9e942405e0a70cdd6c2895c0927cbeb1d36
MD5 678e9c4eaeeb8a764c859390a9687eb8
BLAKE2b-256 a7614fbfa99e34fb430017d09805f6c8e4aa63ffd20c5aa71a4932ff3b29d30f

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5a8685c5de784d99ab4069d0119480dd59fbcd520b8e7c6a1cd10b7482780e4
MD5 7c030fe8fe809d3c9e6ba896cef384ad
BLAKE2b-256 dc0f69f3ee8fb3061359097778d7b503c3f20be9ad2c2bc0b3564015069044a1

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6cc365f5963937e59d8a8d593ab001b553bdc6a54a0b1e6cd6d3f13e90436c5a
MD5 46592308e467be864d2a805790703053
BLAKE2b-256 a287bd29a85dd17e0c10f8a8d060027b0dab8eab9303a8e07109e9651a3a83ad

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 853aa9618c61083a0dcf94642e890b01f58d0004764c7152d6dd50312a17c6ce
MD5 db6fe2f82018e95b968ef2c02730f5fe
BLAKE2b-256 eb218a87e062d6dad3a27eb58ee6fa50910638a4195ecf3f5a51fc313ed6e7db

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: smol-0.3.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 211.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for smol-0.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 732fbac910f06b85ffe77742773cdf391b6078b4300096c3437bb2faa78eb5b5
MD5 2a8424270090ba94030769fb0fb4e063
BLAKE2b-256 d731f8b04c92230aacc92bbe911c132d28632742728565b3221dbff0d24a44e0

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: smol-0.3.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 201.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for smol-0.3.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6f015baf573456094a8dce5927fde8a760c5fac534041f93b6633bcc8d016691
MD5 6301c29bd48f4a1fb361383fafd60afe
BLAKE2b-256 782f4d2d7e94eacdb196019481b7bd9e06a6ebbf0671b58265f62dcdcc7f3b30

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9bba0bafedc748a94dde6e5fc3170c856b584c48508aec69cf99522563af51d2
MD5 15e2026481c367ed9baa0eb83bc566f3
BLAKE2b-256 370f16ac60d3ad6f6351dda07b170f9185594b0724e9877bea3fcb9be6f61fc1

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e5fe8d8548c30b3dc118a0f019512233b5a13dd0e031703c722ebfbf7ce82d37
MD5 168b5bff081fc876000a24681d839a17
BLAKE2b-256 a3122c0f616dc9675997bcb1837cef4425ec504d6a63a59a4f15d57e1bbbeb5d

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de1f9cf8409091232ab44d951940a86719ef5fe25a1f8727eb7039cc51ac0bb3
MD5 c566f49cafd748afb8fff396a8ebd1c1
BLAKE2b-256 6751d4e967294c3efc38386c66db25d2ac8508fb7607cafc1741f34916b01b12

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f51bb9c6ccedc191edb1fe34120aa6ce6d0f31276e4deb5b1a59a0862c32ab7a
MD5 9853b0b3f2bbe2e4104246dced259e10
BLAKE2b-256 c3a1aef3561077905e03d62c8f9b8873e30cd66d554b462f5e521901bfae0c6d

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2a6a67640b57ac8b168595034ffa16cb3156862797a82cc9c206bd61b848e60d
MD5 b1d61f3313dde1d2692220465abe93ef
BLAKE2b-256 01f3ef5cfb87b546781bde01f001dd2527aa7e7d8302e39d9329fc32d7dd9aa6

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: smol-0.3.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 211.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for smol-0.3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3a156d0483973ae6ef80e55f2a6e0efb123eab58554ee795b67c45d66f67d3e7
MD5 ded0cb201c3cc64669d45ce47d868d2c
BLAKE2b-256 c587723e0a167683d68777099e4082287c7651ada432ce1cb76392b4b932db99

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: smol-0.3.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 201.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.1

File hashes

Hashes for smol-0.3.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 3b920813ec468951ec770d865b61930931ec755f83c86238a90ad217ff63f2d3
MD5 815b136ba5d9abfdf894eea94917063d
BLAKE2b-256 c74c796833cc9793ea38ca57dbcde2a9acca11ce7e0963551a318e071a30252b

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 10582bbdb21f5418f3da0dd74c9706723f48fac363fb696fe164c5075373b5f7
MD5 afb7beea2d742fc35bfd0ac69cc5858d
BLAKE2b-256 e0a2036b92cce507586e3b7de4b0288e1fff0a863562cae7d85c5c1e2d606ce2

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6ca7e7fd59b68bd369b1e9a62e1203b03b58a27004b92665dff05b6e8542953c
MD5 e3ed94e3e898f9b5cc6884f43cc86541
BLAKE2b-256 2d38996215566e4b175899fe2f093e997f0e9b3a4b7703211793102b9cd8285d

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fcf55e513d15b5d1a2167a87ac07add638de6c029a564262065e04d6479b03aa
MD5 e2655cb384dec9222d706a8c4c7e3007
BLAKE2b-256 d86b10067a290eb14a0cdbf26c1f3371fa1f123c3e1e68dbe472314a72808c22

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d03377e82b7c0692cb1b06217afd4345220711303047d9f2d91bfe6e02864367
MD5 ec2218ac01f6e5c39326dc371990eaad
BLAKE2b-256 76c074db47931d11c77882d1ea32782309236c4683384ecc49af17060218ef0e

See more details on using hashes here.

File details

Details for the file smol-0.3.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smol-0.3.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7cc83c39a68c1acdf9daa6096f5e572b563d80064d9b94a0824ec0127557eb8f
MD5 a993d1b29c81536f5ee7d573e6d0059a
BLAKE2b-256 de683059bcc214ce4d0f5077bcf5567b2d9dc970c631cc54b7cd08b6ed92c36e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page