Skip to main content

Brings smoothed maps through python

Project description

Make smoothed maps in your python environnement

Build Status Travis Build Status Appveyor Version Coveralls

More or less a python port of Stewart method from R SpatialPositon package (https://github.com/Groupe-ElementR/SpatialPosition/).

Allow to set a desired number of class and choose discretization method or directly set some custom breaks values.

Input/output can be a path to a geographic layer (GeoJSON, shp, etc.) or a GeoDataFrame.

Requires:

  • Numpy

  • GeoPandas

  • Matplotlib

Documentation on the method :

Please refer to https://github.com/Groupe-ElementR/SpatialPosition/ documentation.

Usage example:

One-shot functionnality

>>> result = quick_stewart('nuts3_data.geojson',
                           "pop1999",
                           span=65000,
                           beta=3,
                           resolution=48000,
                           mask='nuts3_data.geojson',
                           nb_class=10,
                           user_defined_breaks=None,
                           output="geojson")

Object-oriented API, allowing to easily redraw contours with new breaks values

>>> StePot = SmoothStewart('nuts3_data.geojson', "pop1999",
                           span=65000, beta=3,
                           resolution=60000,
                           mask='nuts3_data.geojson')
>>> res = StePot.render(nb_class=8, disc_func="jenks",
                        output="GeoDataFrame")
>>> res.plot(cmap="YlOrRd", linewidth=0.1)
png_example

The long part of the computation is done during the initialization of SmoothStewart instance (i.e. actually computing potentials). Some convenience methods allows to tweak and re-export the few last steps :

Allow to quickly redraw polygons with a new classification method

Availables classification methods are: “equal_interval”, “prog_geom”, “jenks”, “percentiles” and “head-tail-breaks”

>>> res = StePot.render(nb_class=6,
                        disc_func="percentiles",
                        output="GeoDataFrame")

Allow to set custom break values (highly recommended after a first rendering or having take a look at the distibution):

>>> my_breaks = [0, 1697631, 3395263, 5092894, 6790526,
                 8488157, 10185789, 11883420, 13581052]

>>> res = StePot.render(nb_class=6, user_defined_breaks=my_breaks,
                        output="GeoDataFrame")

Installation:

From PyPI :

$ pip install smoomapy

From github :

$ git clone http://github.com/mthh/smoomapy.git
$ cd smoomapy/
$ python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smoomapy-0.1.9.tar.gz (10.3 kB view details)

Uploaded Source

File details

Details for the file smoomapy-0.1.9.tar.gz.

File metadata

  • Download URL: smoomapy-0.1.9.tar.gz
  • Upload date:
  • Size: 10.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for smoomapy-0.1.9.tar.gz
Algorithm Hash digest
SHA256 3b3966852100fa1b233febf3979afb9f4d53a8a12ccc2f5e8fd8b7563aaa2167
MD5 b51f15d54a968cd6d6c8f2f20057cd44
BLAKE2b-256 f43446157add6b7bdcb674690cc04531450c99a1d78efa6fa72af18b420987be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page