Skip to main content

Brings smoothed maps through python

Project description

Make smoothed maps in your python environnement

Build Status Version Coveralls

More or less a python port of Stewart method from R SpatialPositon package (https://github.com/Groupe-ElementR/SpatialPosition/).

Allow to set a desired number of class and choose discretization method or directly set some custom breaks values.

Input/output can be a path to a geographic layer (GeoJSON, shp, etc.) or a GeoDataFrame.

Requires:

  • Numpy

  • GeoPandas

  • SciPy

  • Matplotlib

Documentation on the method :

Please refer to https://github.com/Groupe-ElementR/SpatialPosition/ documentation.

Usage example:

One-shot functionnality

>>> result = quick_stewart('nuts3_data.geojson',
                           "pop1999",
                           span=65000,
                           beta=3,
                           resolution=48000,
                           mask='nuts3_data.geojson',
                           nb_class=10,
                           user_defined_breaks=None,
                           output="geojson")

Object-oriented API, allowing to easily redraw contours with new breaks values or new interpolation functionnality

>>> StePot = SmoothStewart('nuts3_data.geojson', "pop1999",
                           span=65000, beta=3,
                           resolution=60000,
                           mask='nuts3_data.geojson')
>>> res = StePot.render(nb_class=8, func_grid="matplotlib",
                        disc_func="jenks", output="GeoDataFrame")
>>> res.plot(cmap="YlOrRd", linewidth=0.1)
png

The long part of the computation is done during the initialization of SmoothStewart instance (i.e. actually computing potentials). Some convenience methods allows to tweak and re-export the few last steps :

Allow to quickly redraw polygons with a new classification method (or with new interpolation functionnality) Availables classification methods are: “equal_interval”, “prog_geom”, “jenks”, “percentiles” and “head-tail-breaks”

>>> StePot.change_interp_grid_shape((164, 112))

>>> res = StePot.render(nb_class=6, func_grid="scipy",
                        disc_func="percentiles", output="GeoDataFrame")

Allow to set custom break values (highly recommended after a first rendering or having take a look at the distibution):

>>> my_breaks = [0, 1697631, 3395263, 5092894, 6790526,
                 8488157, 10185789, 11883420, 13581052]

>>> res = StePot.render(nb_class=6, user_defined_breaks=my_breaks,
                        output="GeoDataFrame")

Installation:

From PyPI :

$ pip install smoomapy

From github :

$ git clone http://github.com/mthh/smoomapy.git
$ cd smoomapy/
$ python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smoomapy-0.1.4.tar.gz (10.4 kB view details)

Uploaded Source

File details

Details for the file smoomapy-0.1.4.tar.gz.

File metadata

  • Download URL: smoomapy-0.1.4.tar.gz
  • Upload date:
  • Size: 10.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for smoomapy-0.1.4.tar.gz
Algorithm Hash digest
SHA256 4f54b825fe50c8578f0236ee0df7f984060733797af7268a379aeb22f2d64cd2
MD5 9fee58f027b0d57b7d36d1909c73973a
BLAKE2b-256 96bd2e972196364f3d35fd618518d74c13eef1aa47fff0a4b2a15a7dab53b10e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page