Skip to main content

Brings smoothed maps through python

Project description

Make smoothed maps in your python environnement

Build Status Travis Build Status Appveyor Version Coveralls

More or less a python port of Stewart method from R SpatialPositon package (https://github.com/Groupe-ElementR/SpatialPosition/).

Allow to set a desired number of class and choose discretization method or directly set some custom breaks values.

Input/output can be a path to a geographic layer (GeoJSON, shp, etc.) or a GeoDataFrame.

Requires:

  • Numpy

  • GeoPandas

  • SciPy

  • Matplotlib

Documentation on the method :

Please refer to https://github.com/Groupe-ElementR/SpatialPosition/ documentation.

Usage example:

One-shot functionnality

>>> result = quick_stewart('nuts3_data.geojson',
                           "pop1999",
                           span=65000,
                           beta=3,
                           resolution=48000,
                           mask='nuts3_data.geojson',
                           nb_class=10,
                           user_defined_breaks=None,
                           output="geojson")

Object-oriented API, allowing to easily redraw contours with new breaks values or new interpolation functionnality

>>> StePot = SmoothStewart('nuts3_data.geojson', "pop1999",
                           span=65000, beta=3,
                           resolution=60000,
                           mask='nuts3_data.geojson')
>>> res = StePot.render(nb_class=8, func_grid="matplotlib",
                        disc_func="jenks", output="GeoDataFrame")
>>> res.plot(cmap="YlOrRd", linewidth=0.1)
png_example

The long part of the computation is done during the initialization of SmoothStewart instance (i.e. actually computing potentials). Some convenience methods allows to tweak and re-export the few last steps :

Allow to quickly redraw polygons with a new classification method (or with new interpolation functionnality) Availables classification methods are: “equal_interval”, “prog_geom”, “jenks”, “percentiles” and “head-tail-breaks”

>>> StePot.change_interp_grid_shape((164, 112))

>>> res = StePot.render(nb_class=6, func_grid="scipy",
                        disc_func="percentiles", output="GeoDataFrame")

Allow to set custom break values (highly recommended after a first rendering or having take a look at the distibution):

>>> my_breaks = [0, 1697631, 3395263, 5092894, 6790526,
                 8488157, 10185789, 11883420, 13581052]

>>> res = StePot.render(nb_class=6, user_defined_breaks=my_breaks,
                        output="GeoDataFrame")

Installation:

From PyPI :

$ pip install smoomapy

From github :

$ git clone http://github.com/mthh/smoomapy.git
$ cd smoomapy/
$ python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smoomapy-0.1.8.tar.gz (11.0 kB view details)

Uploaded Source

File details

Details for the file smoomapy-0.1.8.tar.gz.

File metadata

  • Download URL: smoomapy-0.1.8.tar.gz
  • Upload date:
  • Size: 11.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for smoomapy-0.1.8.tar.gz
Algorithm Hash digest
SHA256 5dc099e2a2e802a17f263e15cd86dfd8e25e55b426c7efb46a38c67109406063
MD5 03fe1dd37dd5f0071dcf783f251df13d
BLAKE2b-256 3047d03003e0f71c5da4fe1ac66b808a0d18b7aa8968fb5e3c13699c765bfa02

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page