Skip to main content

Structural MRI Preprocessing Pipelines

Project description

Docker image available! https://circleci.com/gh/nipreps/smriprep/tree/master.svg?style=shield Coverage report Latest Version Published in Nature Methods

sMRIPrep is a structural magnetic resonance imaging (sMRI) data preprocessing pipeline that is designed to provide an easily accessible, state-of-the-art interface that is robust to variations in scan acquisition protocols and that requires minimal user input, while providing easily interpretable and comprehensive error and output reporting. It performs basic processing steps (subject-wise averaging, B1 field correction, spatial normalization, segmentation, skullstripping etc.) providing outputs that can be easily connected to subsequent tools such as fMRIPrep or dMRIPrep.

https://github.com/oesteban/smriprep/raw/033a6b4a54ecbd9051c45df979619cda69847cd1/docs/_resources/workflow.png

The workflow is based on Nipype and encompasses a combination of tools from well-known software packages, including FSL, ANTs, FreeSurfer, and Connectome Workbench.

More information and documentation can be found at https://www.nipreps.org/smriprep/. Support is provided on neurostars.org.

Principles

sMRIPrep is built around three principles:

  1. Robustness - The pipeline adapts the preprocessing steps depending on the input dataset and should provide results as good as possible independently of scanner make, scanning parameters or presence of additional correction scans (such as fieldmaps).

  2. Ease of use - Thanks to dependence on the BIDS standard, manual parameter input is reduced to a minimum, allowing the pipeline to run in an automatic fashion.

  3. “Glass box” philosophy - Automation should not mean that one should not visually inspect the results or understand the methods. Thus, sMRIPrep provides visual reports for each subject, detailing the accuracy of the most important processing steps. This, combined with the documentation, can help researchers to understand the process and decide which subjects should be kept for the group level analysis.

Acknowledgements

Please acknowledge this work by mentioning explicitly the name of this software (sMRIPrep) and the version, along with a link to the GitHub repository or the Zenodo reference (doi:10.5281/zenodo.2650521).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

smriprep-0.14.0-py3-none-any.whl (19.2 MB view details)

Uploaded Python 3

File details

Details for the file smriprep-0.14.0-py3-none-any.whl.

File metadata

  • Download URL: smriprep-0.14.0-py3-none-any.whl
  • Upload date:
  • Size: 19.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for smriprep-0.14.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fe5345b5e9aaa40eeaef40433b4eb10c0d45e38c39ba59ebffac8b8d22a8ea56
MD5 029041776ccdd31bf7d4196d295efbe1
BLAKE2b-256 642a2a11f441ded29066652f53e3c29b55d59656f27164abb04e5b778e136994

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page