Skip to main content

Smart UseR Frequency analySer, a fast and easy to use frequency analyser.

Project description

SMURFS

SMURFS Image

The SMURFS (SMart UseR Frequency analySer) provides automatic extraction of frequencies from a Timeseries data. It provides various interfaces, from a standalone command line tool, to jupyter and python integrations. It also automatically computes possible frequency combinations, directly downloads of TESS/Kepler/K2 data and more.

Getting started

To install smurfs, you need python > 3.5, pip as well as cmake. If you don't have these, install them through the packet manager of your choice (f.e. brew(Mac) or apt (Debian)). For pip check here.

Installation

First off, create a virtual environment

cd /Path/
python3 -m venv venv/
source venv/bin/activate

Install smurfs through pip

pip install smurfs

Quickstart

Using SMURFS as a standalone command line tool is very simple. Simply call smurfs with a target, signal to noise ratio cutoff and the window size. The target can be either:

  • A path to a file, containing 2 columns with time and flux
  • Any name of a star, that is resolvable by Simbad and has been observed by the Kepler,K2 or TESS missions.

As an example, we can take a look at the star Gamma Doradus:

smurfs "Gamma Doradus" 4 2

Executing this command will make smurfs search for light curves of the star. It starts by using the lightkurve.search.search_lightcurvefile method, which queries MAST for processed light curves of the object. If this doesn't return any light curves, SMURFS will then check if the star has been observed by the TESS mission. It queries Simbad for the coordinates of the object and then checks if that point was observed by TESS. If so, we use TessCut and the Eleanor pipeline to extract the light curve.

In the case of Gamma Doradus, we have existing TESS SC light curves. Smurfs will give the following output: Gamma Doradus output

SMURFS creates a result folder after running the code. In this case it has the following structure

- Gamma_Doradus
    - data
        - _combinations.csv
        - _result.csv
        - LC_residual.txt
        - LC.txt
        - PS_residual.txt
        - PS.txt         
    - plots
        - LC_residual.pdf
        - LC.pdf
        - PS_residual.pdf
        - PS_result.pdf
        - PS.pdf

The LC*.txt files contain the light curves, original and residual. The PS*.txt files contain the original as well as the residual amplitude spectrum. _combinations.csv shows all combination frequencies for the result and _result.csv gives the result for a given run.

Documentation

Full documenation is available here

Features

SMURFS provides various nice to have features, setting it apart from common frequency analysers. These include

  • Python only. No more Fortran, IDL or other more obfuscating languages
  • Fast runs due to the usage of optimized libraries, including numpy, scipy and astropy, dedicated to scientific work
  • Generates a full result set that can be used for further analysis, including spectra of the first and last frequency, spectrograms, machine readable results and so on.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smurfs-1.0.12.tar.gz (26.3 kB view details)

Uploaded Source

Built Distribution

smurfs-1.0.12-py3-none-any.whl (30.2 kB view details)

Uploaded Python 3

File details

Details for the file smurfs-1.0.12.tar.gz.

File metadata

  • Download URL: smurfs-1.0.12.tar.gz
  • Upload date:
  • Size: 26.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.3

File hashes

Hashes for smurfs-1.0.12.tar.gz
Algorithm Hash digest
SHA256 245e0b4b8519694144ed63597cbb91bb5d7a9ccc10ed4d4832b9e4579a120ec2
MD5 b0408feaf026e40f10d3806f4b16616b
BLAKE2b-256 1f2dec2afff30460db1f9771f832946a1c227185e7259314be9fcdc75d2e60b7

See more details on using hashes here.

File details

Details for the file smurfs-1.0.12-py3-none-any.whl.

File metadata

  • Download URL: smurfs-1.0.12-py3-none-any.whl
  • Upload date:
  • Size: 30.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.3

File hashes

Hashes for smurfs-1.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 c1fbdcb56ee7a3d8e0785fe0eaac7f7ad62d31f0ace303c547e6073d95b662c5
MD5 23815eadee9c15413b1a01531ce3e3d3
BLAKE2b-256 66af8370ee5d547efa5b0674f11174c47d2fb96a839302ba61f8569801ddd664

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page