Skip to main content

Smart UseR Frequency analySer, a fast and easy to use frequency analyser.

Project description

SMURFS

SMURFS Image

The SMURFS (SMart UseR Frequency analySer) provides automatic extraction of frequencies from a Timeseries data. It provides various interfaces, from a standalone command line tool, to jupyter and python integrations. It also automatically computes possible frequency combinations, directly downloads of TESS/Kepler/K2 data and more.

Getting started

To install smurfs, you need python > 3.5, pip as well as cmake. If you don't have these, install them through the packet manager of your choice (f.e. brew(Mac) or apt (Debian)). For pip check here.

Installation

First off, create a virtual environment

cd /Path/
python3 -m venv venv/
source venv/bin/activate

Install smurfs through pip

pip install smurfs

Quickstart

Using SMURFS as a standalone command line tool is very simple. Simply call smurfs with a target, signal to noise ratio cutoff and the window size. The target can be either:

  • A path to a file, containing 2 columns with time and flux
  • Any name of a star, that is resolvable by Simbad and has been observed by the Kepler,K2 or TESS missions.

As an example, we can take a look at the star Gamma Doradus:

smurfs "Gamma Doradus" 4 2

Executing this command will make smurfs search for light curves of the star. It starts by using the lightkurve.search.search_lightcurvefile method, which queries MAST for processed light curves of the object. If this doesn't return any light curves, SMURFS will then check if the star has been observed by the TESS mission. It queries Simbad for the coordinates of the object and then checks if that point was observed by TESS. If so, we use TessCut and the Eleanor pipeline to extract the light curve.

In the case of Gamma Doradus, we have existing TESS SC light curves. Smurfs will give the following output: Gamma Doradus output

SMURFS creates a result folder after running the code. In this case it has the following structure

- Gamma_Doradus
    - data
        - _combinations.csv
        - _result.csv
        - LC_residual.txt
        - LC.txt
        - PS_residual.txt
        - PS.txt         
    - plots
        - LC_residual.pdf
        - LC.pdf
        - PS_residual.pdf
        - PS_result.pdf
        - PS.pdf

The LC*.txt files contain the light curves, original and residual. The PS*.txt files contain the original as well as the residual amplitude spectrum. _combinations.csv shows all combination frequencies for the result and _result.csv gives the result for a given run.

Documentation

Full documenation is available here

Features

SMURFS provides various nice to have features, setting it apart from common frequency analysers. These include

  • Python only. No more Fortran, IDL or other more obfuscating languages
  • Fast runs due to the usage of optimized libraries, including numpy, scipy and astropy, dedicated to scientific work
  • Generates a full result set that can be used for further analysis, including spectra of the first and last frequency, spectrograms, machine readable results and so on.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smurfs-1.0.14.tar.gz (25.8 kB view details)

Uploaded Source

Built Distribution

smurfs-1.0.14-py3-none-any.whl (29.9 kB view details)

Uploaded Python 3

File details

Details for the file smurfs-1.0.14.tar.gz.

File metadata

  • Download URL: smurfs-1.0.14.tar.gz
  • Upload date:
  • Size: 25.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.3

File hashes

Hashes for smurfs-1.0.14.tar.gz
Algorithm Hash digest
SHA256 e724762b90a28dd79ad5f515733f8fa37d83bfe9ff50b1186738932eef9276d5
MD5 8d18d5385ed1fd037dde4b668a3cadbe
BLAKE2b-256 4b4dcf4097791f2719eaf1b24960bc546225f64300040bfc468f0fae3c26e059

See more details on using hashes here.

File details

Details for the file smurfs-1.0.14-py3-none-any.whl.

File metadata

  • Download URL: smurfs-1.0.14-py3-none-any.whl
  • Upload date:
  • Size: 29.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.3

File hashes

Hashes for smurfs-1.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 0826a264edcd4e99e1b4f7f52f226d19b299ab43ce3b86cc8f7263c9858626a7
MD5 776ba5f2959d6552af0be8398c5350b8
BLAKE2b-256 636843cd920ec173713cb32e68bdd2e5825e24e8b30d4b03003bd7fe7866f276

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page