Skip to main content

Simple node addition tool for onnx. Simple Node Addition for ONNX.

Project description

sna4onnx

Simple node addition tool for onnx. Simple Node Addition for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • Combines the OP generated by sog4onnx with the specified output and input OPs.
  • Use a good combination with the ONNX merge tool snc4onnx while merging OP parts.
  • Only one OP can be extrapolated at a time.
  • After OP extrapolation, the entire model is checked, and even if there is a consistency problem, only a warning is displayed and the ONNX file is output as is.
  • Add unconnected input and output variables to the input/output OP of a graph.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sna4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ sna4onnx -h

usage:
  sna4onnx [-h]
  -if INPUT_ONNX_FILE_PATH
  -aot ADD_OP_TYPE
  -aon ADD_OP_NAME
  [-aoiv NAME TYPE VALUE]
  [-aoov NAME TYPE VALUE]
  [-aoa NAME DTYPE VALUE]
  [-csoon SRCOP_NAME SRCOP_OUTPUT_NAME ADDOP_NAME ADDOP_INPUT_NAME]
  -cdoin ADDOP_NAME ADDOP_OUTPUT_NAME DESTOP_NAME DESTOP_INPUT_NAME
  [-of OUTPUT_ONNX_FILE_PATH]
  [-n]

optional arguments:
  -h, --help
      show this help message and exit

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
      Input onnx file path.

  -aot ADD_OP_TYPE, --add_op_type ADD_OP_TYPE
      ONNX OP type.
      https://github.com/onnx/onnx/blob/main/docs/Operators.md

  -aon ADD_OP_NAME, --add_op_name ADD_OP_NAME
      Name of OP to be added.
      e.g.
      --add_op_name AddOP1

  -aoiv ADD_OP_INPUT_VARIABLES ADD_OP_INPUT_VARIABLES ADD_OP_INPUT_VARIABLES, --add_op_input_variables ADD_OP_INPUT_VARIABLES ADD_OP_INPUT_VARIABLES ADD_OP_INPUT_VARIABLES
      input_variables can be specified multiple times.
      --add_op_input_variables variable_name numpy.dtype shape
      https://github.com/onnx/onnx/blob/main/docs/Operators.md
      e.g.
      --add_op_input_variables inpname1 float32 [1,3,5,5]
      --add_op_input_variables inpname2 int32 [1]
      --add_op_input_variables inpname3 float64 [1,3,224,224]

  -aoov ADD_OP_OUTPUT_VARIABLES ADD_OP_OUTPUT_VARIABLES ADD_OP_OUTPUT_VARIABLES, --add_op_output_variables ADD_OP_OUTPUT_VARIABLES ADD_OP_OUTPUT_VARIABLES ADD_OP_OUTPUT_VARIABLES
      output_variables can be specified multiple times.
      --add_op_output_variables variable_name numpy.dtype shape
      https://github.com/onnx/onnx/blob/main/docs/Operators.md
      e.g.
      --add_op_output_variables outname1 float32 [1,3,5,5]
      --add_op_output_variables outname2 int32 [1]
      --add_op_output_variables outname3 float64 [1,3,224,224]

  -aoa ADD_OP_ATTRIBUTES ADD_OP_ATTRIBUTES ADD_OP_ATTRIBUTES, --add_op_attributes ADD_OP_ATTRIBUTES ADD_OP_ATTRIBUTES ADD_OP_ATTRIBUTES
      attributes can be specified multiple times.
      --add_op_attributes name dtype value
      dtype is one of "float32" or "float64" or "int32" or "int64" or "str".
      https://github.com/onnx/onnx/blob/main/docs/Operators.md
      e.g.
      --add_op_attributes alpha float32 1.0
      --add_op_attributes beta float32 1.0
      --add_op_attributes transA int64 0
      --add_op_attributes transB int64 0

  -csoon CONNECTION_SRC_OP_OUTPUT_NAMES CONNECTION_SRC_OP_OUTPUT_NAMES CONNECTION_SRC_OP_OUTPUT_NAMES CONNECTION_SRC_OP_OUTPUT_NAMES, --connection_src_op_output_names CONNECTION_SRC_OP_OUTPUT_NAMES CONNECTION_SRC_OP_OUTPUT_NAMES CONNECTION_SRC_OP_OUTPUT_NAMES CONNECTION_SRC_OP_OUTPUT_NAMES
      Specify the name of the output name from which to connect.
      e.g.
      -Before-
        [OpA]oname1 - iname1[OpB]oname1
        [OpC]oname1

      -After-
        [OpA]oname1 - iname1[AddOP1]oname1 - iname1[OpB]oname1
        [OpC]oname1 - iname2[AddOP1]

      When extrapolating a new OP between OpA and OpB.
      --connection_src_op_output_names OpA oname1 AddOP1 iname1
      --connection_src_op_output_names OpC oname1 AddOP1 iname2
      This need not be specified only when the type of the newly added OP is Constant.

  -cdoin CONNECTION_DEST_OP_INPUT_NAMES CONNECTION_DEST_OP_INPUT_NAMES CONNECTION_DEST_OP_INPUT_NAMES CONNECTION_DEST_OP_INPUT_NAMES, --connection_dest_op_input_names CONNECTION_DEST_OP_INPUT_NAMES CONNECTION_DEST_OP_INPUT_NAMES CONNECTION_DEST_OP_INPUT_NAMES CONNECTION_DEST_OP_INPUT_NAMES
      Specify the name of the input name from which to connect.
      e.g.
      -Before-
        [OpA]oname1 - iname1[OpB]oname1
        [OpC]oname1

      -After-
        [OpA]oname1 - iname1[AddOP1]oname1 - iname1[OpB]oname1
        [OpC]oname1 - iname2[AddOP1]

      When extrapolating a new OP between OpA and OpB.
      --connection_dest_op_input_names AddOP1 oname1 OpB iname1

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
      Output onnx file path.
      If not specified, a file with "_mod" appended to the end of input_onnx_file_path is output.
      e.g.
      aaa.onnx -> aaa_mod.onnx

  -n, --non_verbose
      Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from sna4onnx import add
>>> help(add)

Help on function add in module sna4onnx.onnx_operation_adder:

add(
  connection_src_op_output_names: List,
  connection_dest_op_input_names: List,
  add_op_type: str, add_op_name: str,
  add_op_input_variables: Union[dict, NoneType] = None,
  add_op_output_variables: Union[dict, NoneType] = None,
  add_op_attributes: Union[dict, NoneType] = None,
  input_onnx_file_path: Union[str, NoneType] = '',
  onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
  output_onnx_file_path: Union[str, NoneType] = '',
  non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    connection_src_op_output_names: List
        Specify the name of the output name from which to connect.

        e.g.
        -Before-
            [OpA] outnameA - inpnameB1 [OpB] outnameB
            [OpC] outnameC
        -After-
            [OpA] outnameA - inpname1 [AddOP1] outname1 - inpnameB1 [OpB] outnameB
            [OpC] outnameC - inpname2 [AddOP1]
        When extrapolating a new OP between OpA and OpB.
        connection_src_op_output_names = [
            ["OpA", "outnameA", "AddOP1", "inpname1",],
            ["OpC", "outnameC", "AddOP1", "inpname2",],
        ]

        This need not be specified only when the type of the newly added OP is Constant.

    connection_dest_op_input_names: List
        Specify the name of the input name from which to connect.

        e.g.
        -Before-
            [OpA] outnameA - inpnameB1 [OpB] outnameB
            [OpC] outnameC
        -After-
            [OpA] outnameA - inpname1 [AddOP1] outname1 - inpnameB1 [OpB] outnameB
            [OpC] outnameC - inpname2 [AddOP1]
        When extrapolating a new OP between OpA and OpB.
        connection_dest_op_input_names = [
            ["AddOP1", "outname1", "OpB", "inpnameB1"],
        ]

    add_op_type: str
        ONNX op type.
        See below for the types of OPs that can be specified.

        e.g. "Add", "Div", "Gemm", ...
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    add_op_name: str
        Name of OP to be added.

        e.g. --add_op_name AddOP1

    add_op_input_variables: Optional[dict]
        Specify input variables for the OP to be generated.
        See below for the variables that can be specified.

        {
            "input_var_name1": [numpy.dtype, shape],
            "input_var_name2": [numpy.dtype, shape],
            ...
        }

        e.g.
        add_op_input_variables = {
            "inpname1": [np.float32, [1,224,224,3]],
            "inpname2": [np.bool_, [0]],
            ...
        }
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    add_op_output_variables: Optional[dict]
        Specify output variables for the OP to be generated.
        See below for the variables that can be specified.

        {
            "output_var_name1": [numpy.dtype, shape],
            "output_var_name2": [numpy.dtype, shape],
            ...
        }

        e.g.
        add_op_output_variables = {
            "outname1": [np.float32, [1,224,224,3]],
            "outname2": [np.bool_, [0]],
            ...
        }
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    add_op_attributes: Optional[dict]
        Specify output add_op_attributes for the OP to be generated.
        See below for the add_op_attributes that can be specified.

        {
            "attr_name1": value1,
            "attr_name2": value2,
            "attr_name3": value3,
            ...
        }

        e.g.
        add_op_attributes = {
            "alpha": 1.0,
            "beta": 1.0,
            "transA": 0,
            "transB": 0,
        }
        Default: None
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        Default: ''

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path. If not specified, no ONNX file is output.
        Default: ''

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    changed_graph: onnx.ModelProto
        Changed onnx ModelProto.

4. CLI Execution

$ sna4onnx \
--input_onnx_file_path crestereo_init_iter2_120x160.onnx \
--connection_src_op_output_name Sub_451 onnx::Pow_603 dummy_mul inp1 \
--connection_dest_op_input_name dummy_mul out1 Div_458 onnx::Pow_603 \
--add_op_type Mul \
--add_op_name dummy_mul \
--add_op_input_variables inp1 float32 [1,70,256] \
--add_op_input_variables inp2_const float32 [1] \
--add_op_output_variables out1 float32 [1,70,256] \
--output_onnx_file_path test.onnx

5. In-script Execution

from sna4onnx import add

onnx_graph = add(
  input_onnx_file_path="crestereo_init_iter2_120x160.onnx",
  connection_src_op_output_names=[
    ["Sub_451", "onnx::Pow_603", "dummy_mul", "inp1"],
  ],
  connection_dest_op_input_names=[
    ["dummy_mul","out1", "Div_458", "onnx::Pow_603"],
  ],
  add_op_type="Mul",
  add_op_name="dummy_mul",
  add_op_input_variables={
    "inp1": [np.float32, [1,70,256]],
    "inp2_const": [np.float32, [1]],
  },
  add_op_output_variables={
    "out1": [np.float32, [1,70,256]],
  },
)

# or

onnx_graph = add(
  onnx_graph=graph,
  connection_src_op_output_names=[
    ["Sub_451", "onnx::Pow_603", "dummy_mul", "inp1"],
  ],
  connection_dest_op_input_names=[
    ["dummy_mul","out1", "Div_458", "onnx::Pow_603"],
  ],
  add_op_type="Mul",
  add_op_name="dummy_mul",
  add_op_input_variables={
    "inp1": [np.float32, [1,70,256]],
    "inp2_const": [np.float32, [1]],
  },
  add_op_output_variables={
    "out1": [np.float32, [1,70,256]],
  },
)

6. Sample

Before

20220426234631

After

image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/Operators.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/simple-onnx-processing-tools
  5. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sna4onnx-1.0.6.tar.gz (11.6 kB view details)

Uploaded Source

Built Distribution

sna4onnx-1.0.6-py3-none-any.whl (10.3 kB view details)

Uploaded Python 3

File details

Details for the file sna4onnx-1.0.6.tar.gz.

File metadata

  • Download URL: sna4onnx-1.0.6.tar.gz
  • Upload date:
  • Size: 11.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for sna4onnx-1.0.6.tar.gz
Algorithm Hash digest
SHA256 71e2863e11ad483a6faa5893b01c16977dea680b7b9c9ff4805c4d4559c91d6d
MD5 b5889b81a84af301063cb4388cd0fe58
BLAKE2b-256 f56e4b4a65cd858d17cb109802edcd53d6de97e9beb86c4b4361bfee28709614

See more details on using hashes here.

File details

Details for the file sna4onnx-1.0.6-py3-none-any.whl.

File metadata

  • Download URL: sna4onnx-1.0.6-py3-none-any.whl
  • Upload date:
  • Size: 10.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for sna4onnx-1.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 86dff8fdec51b31269b5d4bcaee6c8e6e9b3a1ed43c2e2ff2f6966e3e3eb86e0
MD5 f7720d05c3035f117dfa448501ff1d02
BLAKE2b-256 f752c7f91fa3ff0d97356b3781b6ef1ad803b5a5f8e51a1feb5fc2b0cd6c0d5c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page