Skip to main content

Simple node deletion tool for onnx.

Project description

snd4onnx

Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs. Pull requests are welcome.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U snd4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ snd4onnx -h

usage:
    snd4onnx [-h]
    -rn REMOVE_NODE_NAMES [REMOVE_NODE_NAMES ...]
    -if INPUT_ONNX_FILE_PATH
    -of OUTPUT_ONNX_FILE_PATH
    [-n]

optional arguments:
  -h, --help
        show this help message and exit.

  -rn REMOVE_NODE_NAMES [REMOVE_NODE_NAMES ...], --remove_node_names REMOVE_NODE_NAMES [REMOVE_NODE_NAMES ...]
        ONNX node name to be deleted.

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path.

  -n, --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from snd4onnx import remove
>>> help(remove)

Help on function remove in module snd4onnx.onnx_remove_node:

remove(
    remove_node_names: List[str],
    input_onnx_file_path: Union[str, NoneType] = '',
    output_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    remove_node_names: List[str]
        List of OP names to be deleted.
        e.g. remove_node_names = ['op_name1', 'op_name2', 'op_name3', ...]

    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.

    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If output_onnx_file_path is not specified, no .onnx file is output.

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    removed_graph: onnx.ModelProto
        OP removed onnx ModelProto.

4. CLI Execution

$ snd4onnx \
--remove_node_names node_name_a node_name_b \
--input_onnx_file_path input.onnx \
--output_onnx_file_path output.onnx

5. In-script Execution

from snd4onnx import remove

onnx_graph = remove(
    remove_node_names=['node_name_a', 'node_name_b'],
    input_onnx_file_path='input.onnx',
)

# or

onnx_graph = remove(
    remove_node_names=['node_name_a', 'node_name_b'],
    onnx_graph=graph,
)

6. Sample

6-1. sample.1

Before After
test1 onnx test1_removed onnx

6-2. sample.2

Before After
test3 onnx test3_removed onnx

6-3. sample.3

Before After
test5 onnx test5_removed onnx

6-4. sample.4

Before After
test7 onnx test7_removed onnx

6-5. sample.5

Before After
test8 onnx test8_removed onnx

7. Reference

  1. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  2. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  3. https://github.com/PINTO0309/scs4onnx
  4. https://github.com/PINTO0309/sne4onnx
  5. https://github.com/PINTO0309/snc4onnx
  6. https://github.com/PINTO0309/sog4onnx
  7. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

snd4onnx-1.1.6.tar.gz (9.9 kB view details)

Uploaded Source

Built Distribution

snd4onnx-1.1.6-py3-none-any.whl (9.0 kB view details)

Uploaded Python 3

File details

Details for the file snd4onnx-1.1.6.tar.gz.

File metadata

  • Download URL: snd4onnx-1.1.6.tar.gz
  • Upload date:
  • Size: 9.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for snd4onnx-1.1.6.tar.gz
Algorithm Hash digest
SHA256 452a4b8c93a03f5ead668f389ce7f27fd84e0fb44fc9c38eb683d4960fa24ce7
MD5 1ac9177d22655d85c1f3d1851767f10a
BLAKE2b-256 fa86ce74c59287b638711932cdd8de2f43d7a362a1466364b326c8da8f9d899d

See more details on using hashes here.

File details

Details for the file snd4onnx-1.1.6-py3-none-any.whl.

File metadata

  • Download URL: snd4onnx-1.1.6-py3-none-any.whl
  • Upload date:
  • Size: 9.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for snd4onnx-1.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 8c1a57219a50ad076ea30fa8b9dffa63baa23ba47e4efe1b2b7560a0c2d56c39
MD5 3a1603015ede76fb6d3aa8a7b9bf57ad
BLAKE2b-256 913c15c07ad4873af6d7186d793a85a95aa88308dae53ddaa832115f5928363b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page