Skip to main content

A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want. Simple Network Extraction for ONNX.

Project description

sne4onnx

A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want. Simple Network Extraction for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • If INPUT OP name and OUTPUT OP name are specified, the onnx graph within the range of the specified OP name is extracted and .onnx is generated.
  • I do not use onnx.utils.extractor.extract_model because it is very slow and I implement my own model separation logic.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com
&& pip install -U sne4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ sne4onnx -h

usage:
    sne4onnx [-h]
    -if INPUT_ONNX_FILE_PATH
    -ion INPUT_OP_NAMES
    -oon OUTPUT_OP_NAMES
    [-of OUTPUT_ONNX_FILE_PATH]
    [-n]

optional arguments:
  -h, --help
    show this help message and exit

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
    Input onnx file path.

  -ion INPUT_OP_NAMES [INPUT_OP_NAMES ...], --input_op_names INPUT_OP_NAMES [INPUT_OP_NAMES ...]
    List of OP names to specify for the input layer of the model.
    e.g. --input_op_names aaa bbb ccc

  -oon OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...], --output_op_names OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...]
    List of OP names to specify for the output layer of the model.
    e.g. --output_op_names ddd eee fff

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
    Output onnx file path. If not specified, extracted.onnx is output.

  -n, --non_verbose
    Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from sne4onnx import extraction
>>> help(extraction)

Help on function extraction in module sne4onnx.onnx_network_extraction:

extraction(
    input_op_names: List[str],
    output_op_names: List[str],
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = '',
    non_verbose: Optional[bool] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_op_names: List[str]
        List of OP names to specify for the input layer of the model.
        e.g. ['aaa','bbb','ccc']

    output_op_names: List[str]
        List of OP names to specify for the output layer of the model.
        e.g. ['ddd','eee','fff']

    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If not specified, .onnx is not output.
        Default: ''

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    extracted_graph: onnx.ModelProto
        Extracted onnx ModelProto

4. CLI Execution

$ sne4onnx \
--input_onnx_file_path input.onnx \
--input_op_names aaa bbb ccc \
--output_op_names ddd eee fff \
--output_onnx_file_path output.onnx

5. In-script Execution

5-1. Use ONNX files

from sne4onnx import extraction

extracted_graph = extraction(
  input_op_names=['aaa','bbb','ccc'],
  output_op_names=['ddd','eee','fff'],
  input_onnx_file_path='input.onnx',
  output_onnx_file_path='output.onnx',
)

5-2. Use onnx.ModelProto

from sne4onnx import extraction

extracted_graph = extraction(
  input_op_names=['aaa','bbb','ccc'],
  output_op_names=['ddd','eee','fff'],
  onnx_graph=graph,
  output_onnx_file_path='output.onnx',
)

6. Samples

6-1. Pre-extraction

image image image

6-2. Extraction

$ sne4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280.onnx \
--input_op_names 0 1 \
--output_op_names 497 785 \
--output_onnx_file_path hitnet_sf_finalpass_720x960_head.onnx

6-3. Extracted

image image image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/snd4onnx
  5. https://github.com/PINTO0309/scs4onnx
  6. https://github.com/PINTO0309/snc4onnx
  7. https://github.com/PINTO0309/sog4onnx
  8. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sne4onnx-1.0.13.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

sne4onnx-1.0.13-py3-none-any.whl (7.2 kB view details)

Uploaded Python 3

File details

Details for the file sne4onnx-1.0.13.tar.gz.

File metadata

  • Download URL: sne4onnx-1.0.13.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for sne4onnx-1.0.13.tar.gz
Algorithm Hash digest
SHA256 765157c1f7b17e9a2c3e17b1a4016ee57e547963bfc90f0c07f3bb30af14c2b1
MD5 505e0052968f3209501813183db91597
BLAKE2b-256 d7e6abb65fde1cfb85387953a25ebd35fcabff4a833ca1ac265478d3315a9990

See more details on using hashes here.

File details

Details for the file sne4onnx-1.0.13-py3-none-any.whl.

File metadata

  • Download URL: sne4onnx-1.0.13-py3-none-any.whl
  • Upload date:
  • Size: 7.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for sne4onnx-1.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 eb6176239317a4b5b7ba55051f309bfbbb97255c3fd8ab348390bf4c537dc973
MD5 cf67253257718b1ad2d6f7b9f0ab347c
BLAKE2b-256 519c1bb291a4655ad9281c83c2909276d9a263324e425ec3ef73e0d1e05b56fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page