Skip to main content

A simple tool that automatically generates and assigns an OP name to each OP in an old format ONNX file.

Project description

sng4onnx

A simple tool that automatically generates and assigns an OP name to each OP in an old format ONNX file.
Simple op Name Generator for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • Automatically generates and assigns an OP name to each OP in an old format ONNX file.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sng4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ sng4onnx -h

usage:
  sng4onnx [-h]
  -if INPUT_ONNX_FILE_PATH
  -of OUTPUT_ONNX_FILE_PATH
  [-n]

optional arguments:
  -h, --help
      show this help message and exit.

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
      Input onnx file path.

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
      Output onnx file path.

  -n, --non_verbose
      Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from sng4onnx import generate
>>> help(generate)

Help on function generate in module sng4onnx.onnx_opname_generator:

generate(
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = '',
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        Default: ''

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path. If not specified, no ONNX file is output.
        Default: ''

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    renamed_graph: onnx.ModelProto
        Renamed onnx ModelProto.

4. CLI Execution

$ sng4onnx \
--input_onnx_file_path emotion-ferplus-8.onnx \
--output_onnx_file_path emotion-ferplus-8_renamed.onnx

5. In-script Execution

from sng4onnx import generate

onnx_graph = generate(
  input_onnx_file_path="fusionnet_180x320.onnx",
  output_onnx_file_path="fusionnet_180x320_renamed.onnx",
)

6. Sample

https://github.com/onnx/models/blob/main/vision/classification/resnet/model/resnet18-v1-7.onnx

Before

image

After

image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/Operators.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/simple-onnx-processing-tools
  5. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sng4onnx-1.0.4.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

sng4onnx-1.0.4-py3-none-any.whl (5.9 kB view details)

Uploaded Python 3

File details

Details for the file sng4onnx-1.0.4.tar.gz.

File metadata

  • Download URL: sng4onnx-1.0.4.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for sng4onnx-1.0.4.tar.gz
Algorithm Hash digest
SHA256 836022cd466b9afa4cbe118f9d6c23b8444cbe200601798ac314294c5f243eee
MD5 1cb1c132641a61affd68b18f22e930f5
BLAKE2b-256 cb7482cec386e8a296632fca024920d063225c01403c191eadc13b2e65c81a9c

See more details on using hashes here.

File details

Details for the file sng4onnx-1.0.4-py3-none-any.whl.

File metadata

  • Download URL: sng4onnx-1.0.4-py3-none-any.whl
  • Upload date:
  • Size: 5.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for sng4onnx-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 1784d65df96c78532cfd755559a331471e80ccd42ded78044b40ec0d5d708ab4
MD5 91fd2edadacd291ead2f063c0d2e8eb2
BLAKE2b-256 6fd89f6fc80c341d66473896edf58f02f53bbb60a7b0c0d927927d8c8fb3e916

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page