A simple tool that automatically generates and assigns an OP name to each OP in an old format ONNX file.
Project description
sng4onnx
A simple tool that automatically generates and assigns an OP name to each OP in an old format ONNX file.
Simple op Name Generator for ONNX.
https://github.com/PINTO0309/simple-onnx-processing-tools
Key concept
- Automatically generates and assigns an OP name to each OP in an old format ONNX file.
1. Setup
1-1. HostPC
### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc
### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sng4onnx
1-2. Docker
https://github.com/PINTO0309/simple-onnx-processing-tools#docker
2. CLI Usage
$ sng4onnx -h
usage:
sng4onnx [-h]
-if INPUT_ONNX_FILE_PATH
-of OUTPUT_ONNX_FILE_PATH
[-n]
optional arguments:
-h, --help
show this help message and exit.
-if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
Input onnx file path.
-of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
Output onnx file path.
-n, --non_verbose
Do not show all information logs. Only error logs are displayed.
3. In-script Usage
>>> from sng4onnx import generate
>>> help(generate)
Help on function generate in module sng4onnx.onnx_opname_generator:
generate(
input_onnx_file_path: Union[str, NoneType] = '',
onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
output_onnx_file_path: Union[str, NoneType] = '',
non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto
Parameters
----------
input_onnx_file_path: Optional[str]
Input onnx file path.
Either input_onnx_file_path or onnx_graph must be specified.
Default: ''
onnx_graph: Optional[onnx.ModelProto]
onnx.ModelProto.
Either input_onnx_file_path or onnx_graph must be specified.
onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.
output_onnx_file_path: Optional[str]
Output onnx file path. If not specified, no ONNX file is output.
Default: ''
non_verbose: Optional[bool]
Do not show all information logs. Only error logs are displayed.
Default: False
Returns
-------
renamed_graph: onnx.ModelProto
Renamed onnx ModelProto.
4. CLI Execution
$ sng4onnx \
--input_onnx_file_path emotion-ferplus-8.onnx \
--output_onnx_file_path emotion-ferplus-8_renamed.onnx
5. In-script Execution
from sng4onnx import generate
onnx_graph = generate(
input_onnx_file_path="fusionnet_180x320.onnx",
output_onnx_file_path="fusionnet_180x320_renamed.onnx",
)
6. Sample
https://github.com/onnx/models/blob/main/vision/classification/resnet/model/resnet18-v1-7.onnx
Before
After
7. Reference
- https://github.com/onnx/onnx/blob/main/docs/Operators.md
- https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
- https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
- https://github.com/PINTO0309/simple-onnx-processing-tools
- https://github.com/PINTO0309/PINTO_model_zoo
8. Issues
https://github.com/PINTO0309/simple-onnx-processing-tools/issues
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sng4onnx-1.0.4.tar.gz
(5.0 kB
view details)
Built Distribution
File details
Details for the file sng4onnx-1.0.4.tar.gz
.
File metadata
- Download URL: sng4onnx-1.0.4.tar.gz
- Upload date:
- Size: 5.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 836022cd466b9afa4cbe118f9d6c23b8444cbe200601798ac314294c5f243eee |
|
MD5 | 1cb1c132641a61affd68b18f22e930f5 |
|
BLAKE2b-256 | cb7482cec386e8a296632fca024920d063225c01403c191eadc13b2e65c81a9c |
File details
Details for the file sng4onnx-1.0.4-py3-none-any.whl
.
File metadata
- Download URL: sng4onnx-1.0.4-py3-none-any.whl
- Upload date:
- Size: 5.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1784d65df96c78532cfd755559a331471e80ccd42ded78044b40ec0d5d708ab4 |
|
MD5 | 91fd2edadacd291ead2f063c0d2e8eb2 |
|
BLAKE2b-256 | 6fd89f6fc80c341d66473896edf58f02f53bbb60a7b0c0d927927d8c8fb3e916 |