Skip to main content

A simple tool that automatically generates and assigns an OP name to each OP in an old format ONNX file.

Project description

sng4onnx

A simple tool that automatically generates and assigns an OP name to each OP in an old format ONNX file.
Simple op Name Generator for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • Automatically generates and assigns an OP name to each OP in an old format ONNX file.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sng4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ sng4onnx -h

usage:
  sng4onnx [-h]
  -if INPUT_ONNX_FILE_PATH
  -of OUTPUT_ONNX_FILE_PATH
  [-n]

optional arguments:
  -h, --help
      show this help message and exit.

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
      Input onnx file path.

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
      Output onnx file path.

  -n, --non_verbose
      Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from sng4onnx import generate
>>> help(generate)

Help on function generate in module sng4onnx.onnx_opname_generator:

generate(
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_onnx_file_path: Union[str, NoneType] = '',
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        Default: ''

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_onnx_file_path: Optional[str]
        Output onnx file path. If not specified, no ONNX file is output.
        Default: ''

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    renamed_graph: onnx.ModelProto
        Renamed onnx ModelProto.

4. CLI Execution

$ sng4onnx \
--input_onnx_file_path emotion-ferplus-8.onnx \
--output_onnx_file_path emotion-ferplus-8_renamed.onnx

5. In-script Execution

from sng4onnx import generate

onnx_graph = generate(
  input_onnx_file_path="fusionnet_180x320.onnx",
  output_onnx_file_path="fusionnet_180x320_renamed.onnx",
)

6. Sample

https://github.com/onnx/models/blob/main/vision/classification/resnet/model/resnet18-v1-7.onnx

Before

image

After

image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/Operators.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/simple-onnx-processing-tools
  5. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sng4onnx-1.0.3.tar.gz (5.1 kB view details)

Uploaded Source

Built Distribution

sng4onnx-1.0.3-py3-none-any.whl (5.9 kB view details)

Uploaded Python 3

File details

Details for the file sng4onnx-1.0.3.tar.gz.

File metadata

  • Download URL: sng4onnx-1.0.3.tar.gz
  • Upload date:
  • Size: 5.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for sng4onnx-1.0.3.tar.gz
Algorithm Hash digest
SHA256 d10cc1abfddd8896babe31f50caad6a082bdab2e16c9a92323326d21d8f0d0dc
MD5 5f01f6a5d7dbf714b205183d6e252901
BLAKE2b-256 d3b0d3ba956b36cfc2ea7490c5541aacad3f3b21030270ecf684ba73795d1cbb

See more details on using hashes here.

File details

Details for the file sng4onnx-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: sng4onnx-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 5.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for sng4onnx-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c73468345bd3a134223e837ac4f23edcf34bcce154cc50274ddc19a4d4af6b10
MD5 b921ee9f5128092aa986f964bcf9d0f4
BLAKE2b-256 f6c9b6ad4f1ecb00855cb80b22c1dcddc4ec40365794d2a06de6bac55c8ca4d4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page