Skip to main content

Library and command line scripts for inferring identity-by-descent (IBD) segments shared between siblings, imputing missing parental genotypes, and for performing family based genome-wide association and polygenic score analyses.

Project description

snipar

snipar (single nucleotide imputation of parents) is a Python package for inferring identity-by-descent (IBD) segments shared between siblings, imputing missing parental genotypes, and for performing family based genome-wide association and polygenic score analyses using observed and/or imputed parental genotypes.

The imputation method and the family-based GWAS and polygenic score models are described in Young et al. 2022.

Main features:

Infer identity-by-descent segments shared between siblings (ibd.py).

Impute missing parental genotypes given the observed genotypes in a nuclear family (impute.py).

Perform family based GWAS using observed and imputed parental genotypes (gwas.py).

Compute polygenic scores for probands, siblings, and parents from SNP weights using observed/imputed parental genotypes, and perform family based analysis of polygenic scores (pgs.py script).

Compute genome-wide correlations between different effects estimated by gwas.py (correlate.py).

Documentation

Documentation: https://snipar.rtfd.io/

It is recommended to read the guide: https://snipar.rtfd.io/en/latest/guide.html

And to work through the tutorial: https://snipar.rtfd.io/en/latest/tutorial.html

Installing Using pip

snipar currently supports Python 3.7-3.9 on Linux, Windows, and Mac OSX. We recommend using a python distribution such as Anaconda 3 (https://store.continuum.io/cshop/anaconda/).

The easiest way to install is using pip:

pip install snipar

Sometimes this may not work because the pip in the system is outdated. You can upgrade your pip using:

pip install --upgrade pip

Virtual Environment

You may encounter problems with the installation due to Python version incompatability or package conflicts with your existing Python environment. To overcome this, you can try installing in a virtual environment. In a bash shell, this could be done by using the following commands in your directory of choice:

python -m venv path-to-where-you-want-the-virtual-environment-to-be

You can activate and use the environment using

source path-to-where-you-want-the-virtual-environment-to-be/bin/activate

Installing From Source

To install from source, clone the git repository, and in the directory containing the snipar source code, at the shell type:

pip install .

Python version incompatibility

snipar does not currently support Python 3.10 or higher due to version incompatibilities of dependencies. To overcome this, create a Python3.9 environment using conda and install using pip in the conda environment:

conda create -n myenv python=3.9
conda activate myenv
pip install snipar

Apple ARM processor machines

There can be difficulties install snipar on Apple ARM processor machines due to lack of available versions of scientific computing software made for these processors' architectures. A workaround for this is to use snipar in a docker (https://docs.docker.com/desktop/install/mac-install/) image. To create an appropriate docker image, use this command in the terminal:

docker run -it amd64/python:3.9.9-slim-buster /bin/bash

Running tests

To check that the code is working properly and that the C modules have been compiled, you can run the tests using this command:

python -m unittest snipar.tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

snipar-0.0.18-cp39-cp39-win_amd64.whl (53.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

snipar-0.0.18-cp39-cp39-win32.whl (53.2 MB view details)

Uploaded CPython 3.9 Windows x86

snipar-0.0.18-cp39-cp39-musllinux_1_1_x86_64.whl (55.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

snipar-0.0.18-cp39-cp39-musllinux_1_1_i686.whl (55.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

snipar-0.0.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (55.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

snipar-0.0.18-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (55.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

snipar-0.0.18-cp39-cp39-macosx_10_9_x86_64.whl (53.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

snipar-0.0.18-cp38-cp38-win_amd64.whl (53.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

snipar-0.0.18-cp38-cp38-win32.whl (53.3 MB view details)

Uploaded CPython 3.8 Windows x86

snipar-0.0.18-cp38-cp38-musllinux_1_1_x86_64.whl (56.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

snipar-0.0.18-cp38-cp38-musllinux_1_1_i686.whl (55.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

snipar-0.0.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (55.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

snipar-0.0.18-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (55.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

snipar-0.0.18-cp38-cp38-macosx_10_9_x86_64.whl (53.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

snipar-0.0.18-cp37-cp37m-win_amd64.whl (53.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

snipar-0.0.18-cp37-cp37m-win32.whl (53.2 MB view details)

Uploaded CPython 3.7m Windows x86

snipar-0.0.18-cp37-cp37m-musllinux_1_1_x86_64.whl (55.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

snipar-0.0.18-cp37-cp37m-musllinux_1_1_i686.whl (55.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

snipar-0.0.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (54.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

snipar-0.0.18-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (54.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

snipar-0.0.18-cp37-cp37m-macosx_10_9_x86_64.whl (53.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file snipar-0.0.18-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: snipar-0.0.18-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 53.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for snipar-0.0.18-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 269050a83abd46d44cefde292695e771575aca887bc75962480e10972df5ebe2
MD5 7ecc9d57a4e689673d794af6b5cb8953
BLAKE2b-256 ed5cb141bceaeec051e8d149bdac779422eda3119c3a245effd7181a997cde8b

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp39-cp39-win32.whl.

File metadata

  • Download URL: snipar-0.0.18-cp39-cp39-win32.whl
  • Upload date:
  • Size: 53.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for snipar-0.0.18-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4756657c45391ba0f34e1fa52cd2654c814a8460820969d14760425e714047bc
MD5 74f09ede303e3c2fc447837013e2e035
BLAKE2b-256 563e53e605b39f2227c6d6e01f7c2ed9ede25bb00cd5504f59a8ea4e9b5d1d42

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3eb49439bae91018a3265ceff0aa777da1643ed52e40ff540c137c429b876c21
MD5 b1fdc432bf3372f9c7e23ec297f8ac63
BLAKE2b-256 ab5e7b7e1f472e8d10658f3b3242e30fd6d5485b7a10bb90953ab1e1d6e26183

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e606d3563272cd668f08fecdc1dd7b52dd1049a4f30d6ed59647c4cf48f4c597
MD5 1a7dad01bb95d5437029b1de22f13c2c
BLAKE2b-256 470fd57a501c7374ed7a23e0e143e24d3eb279e8ceff362f1a2632858fb47cdb

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fcbe9e0c9e7fae797a6ebdda1b613dd9a2fa8169036d5dcf549e26f9f92a6964
MD5 f682324a0d076b70a7e96c9bdea472ef
BLAKE2b-256 9aca0c259e2c50602ede7e82df4bb3a2891b1975874c38dd5681eeed074acac2

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ff45b297c05ead9da6f4c08fdc075b6a71faeec2ece0d260a8c042eec12d933b
MD5 d7967dc6ed39012c154034be67e8d570
BLAKE2b-256 2c58cdef1d3aaad9948cc2c29cfd54c80316f5dc78f2243da3ffeea09034acfb

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ccbfc003d5e4d2b870b976e51b5a387fbc1fbae181022ccd0d4158fc44c22cd2
MD5 bcef2133f354e6078a448f609643ae0e
BLAKE2b-256 b2daf01f15e746d7eeb7a6d3f170548c0bc22dbb8d993279007e038913062a2c

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: snipar-0.0.18-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 53.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for snipar-0.0.18-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 69bfa4abc4a711a03cd0b90fc0af417516983cf261d853da14795af4ccb86809
MD5 cdaf0b8cd6d16b18defae4950836e31d
BLAKE2b-256 898074e7490d0b506082e47a51c6cd5bc29752337d56f27060e4e05247695c27

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp38-cp38-win32.whl.

File metadata

  • Download URL: snipar-0.0.18-cp38-cp38-win32.whl
  • Upload date:
  • Size: 53.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for snipar-0.0.18-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a92930c00c339a7563e0e6a8af70c77bb2f30c99410dbd1d35e14fe2ed8f3a7e
MD5 41f22e2025024e8c7dc4347c3ec5cf9f
BLAKE2b-256 18f95ccd46687dcae18be0ed86271ab30abbb4729cc6cf07142c4a705ae8e6f5

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 081aebb838369e7e18b6360f7a70e33545cf224e3d7310f817308a0e83b9e3cf
MD5 86d4220263bde940c60f717ab43694ce
BLAKE2b-256 57965e78b71434094bf4fd29055ad5c5743c9dad7a0779a810b669676b68ad9b

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fc8620e308742f84ce242c5390fc7a9eb8892f7f133499489279e042eeb8fc38
MD5 11acb421ca86ce5b9a60d7e464e33293
BLAKE2b-256 ffe2d99b2ff2e52c94054273f5c4e885cac5f4c03f783ea7211a1ad583374695

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a2f5dec09b95dac519576180c23d069675b754d232ef1e28eee28bc0d31e21c4
MD5 72f2aecf8ba7ac4e8a6a80052ee65e0d
BLAKE2b-256 d5d27ad6d2f93708855f08c8e9987299ffb76089862822a5edf66e7d06524500

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bd06706baabfed11474e194d7ddebf538415d3bd29e2060bacc85a3b7d34f5e1
MD5 eead5ef6d0bbbb65f79f169ecb464b15
BLAKE2b-256 22aed1faf349189d6bc2b1a093b3eaaa5804ee4ee12ed5f442a3252db860146e

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f511d8da9d8ee701fb510e90d9495984ad71f89b59c17131c7551f4556332abb
MD5 82659299635c43574bca3c3099d9a8d3
BLAKE2b-256 9a91c927448cb5e5a62cb7c50cdb3706e10c9eb505894781cd6a6c2c11f9d0e8

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: snipar-0.0.18-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 53.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for snipar-0.0.18-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4e199735abec2f8e7b6266950a19ffaf746b0b7c48f58b7f025c5aa1aec90448
MD5 8974a118e4f9d2a40b8846dbcfef39c9
BLAKE2b-256 d5ad0ac6f56c97788bc3afc9f376d44ac6676766860b10f38654ae2c6317b1a9

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp37-cp37m-win32.whl.

File metadata

  • Download URL: snipar-0.0.18-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 53.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for snipar-0.0.18-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c8456da94f960706b2c52fa43adf73641650a84798180970bae7c138e0bec487
MD5 10f95e12f0dee56af7f09a7cedd7dc45
BLAKE2b-256 d78e6f7fb5ed7b68844de2a5fd8cb6284e8cdf58d4c955cf5d8cda70f02cd26b

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bbd8b247a37345e61fb309003cc62dd66d92216477c0c94f717e24d6d00084a7
MD5 6bba81ac00fc89d06740246cd3ead8bf
BLAKE2b-256 05e514a423018572b1699f9b91aea13e2f4e08791a11636f43757ea9c479157d

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 dab734f423bc4a1192a3c06aea0d48fb76842120e85824988ae2c3dc1190b54b
MD5 00d5844072bd0c33a36f46ef55d55a71
BLAKE2b-256 c3e32bd6f38f131e4856297239810b42b3b69d4064a24d9486905b62ca4b59a9

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 da2a8e4501b53aa263524c02ed3144044f9f63dc348a3c44f3786bf124422f44
MD5 f5c85efaf510dcb9eaef55f99f861f9e
BLAKE2b-256 e6c89d7f4c87680ddea1326712aafc5cc7f243056709b064694d2bdcb2f0e1d4

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e7aa70dcde279385bb78274b64cecd2bddbd00427d4cdb0c4a6b891362ba7203
MD5 6a45fbafc8c12891c256ffeca083d460
BLAKE2b-256 f4f38a2c2c029a1267b6774a176d0a75fcf40bccc10dd396a6ad2f7fe6544b4e

See more details on using hashes here.

File details

Details for the file snipar-0.0.18-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for snipar-0.0.18-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f6e254144936fd2e3da5b3fb80d95f976604d2f82bc49c8bddf8044ec1644594
MD5 f4d6584999287488f697f9dc239dd949
BLAKE2b-256 6039c71244adfa2c9bde510c8351b34f7184a1a36993a207b972a016009c2f88

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page