Python implementation algorithm
Project description
=====
slapy
=====
1. install
from pypi:
pip install snowland-algorithm
or
from source code:
download code from https://gitee.com/hoops/snowland-algorithm-python, you can choose a release version
pip install -r requirements.txt
python setup.py install
#. dirs
1. graph
a. dijkstra(v0.0.1+)
#. spfa(v0.0.1+)
#. swarm
a. pso(v0.0.1+)
#. gso(v0.0.2+)
#. fa(v0.0.3+)
#. cso(v0.0.6+)
#. ba(v0.0.6+)
#. sfla(v0.0.6+)
#. bas(v0.0.6+)
#. sa(v0.0.6+)
#. fwa(v0.0.6+)
#. cs(v0.0.7+)
#. bfo(v0.0.7+)
#. quick use
1. import package
>>> from slapy.swarm.package_name import engine_name
2. define the fitness function
example:
>>> fun = lambda x: np.cos(x[0]) + np.sin(x[0]) - x[0] * x[1]
note: arg need to be 1 X n vector
3. run the model
>>> engine = engine_name(your_args)
>>> engine.run()
4. show result
>>> x, y = engine.gbest.chromosome
>>> print('max value', fun(engine.gbest.chromosome))
>>> print('x:', x, 'y:', y)
There is a example for PSO.
>>> def fun(vars):
>>> # fitness function
>>> x, y = vars
>>> if 1 <= x <= 2 * np.pi and 1 <= y <= np.pi:
>>> return np.cos(x) + np.sin(x) - x * y
>>> else:
>>> return -2 - 4 * np.pi ** 2 # return a small float number can not reach
>>> if __name__ == '__main__':
>>> engine = PSOEngine(vmax=0.01, bound=[[1, 2 * np.pi]], min_fitness_value=-1, dim=2, fitness_function=fun, steps=100)
>>> engine.run()
>>> x, y = engine.gbest.chromosome
>>> print('max value', fun(engine.gbest.chromosome))
>>> print('x:', x, 'y:', y)
slapy
=====
1. install
from pypi:
pip install snowland-algorithm
or
from source code:
download code from https://gitee.com/hoops/snowland-algorithm-python, you can choose a release version
pip install -r requirements.txt
python setup.py install
#. dirs
1. graph
a. dijkstra(v0.0.1+)
#. spfa(v0.0.1+)
#. swarm
a. pso(v0.0.1+)
#. gso(v0.0.2+)
#. fa(v0.0.3+)
#. cso(v0.0.6+)
#. ba(v0.0.6+)
#. sfla(v0.0.6+)
#. bas(v0.0.6+)
#. sa(v0.0.6+)
#. fwa(v0.0.6+)
#. cs(v0.0.7+)
#. bfo(v0.0.7+)
#. quick use
1. import package
>>> from slapy.swarm.package_name import engine_name
2. define the fitness function
example:
>>> fun = lambda x: np.cos(x[0]) + np.sin(x[0]) - x[0] * x[1]
note: arg need to be 1 X n vector
3. run the model
>>> engine = engine_name(your_args)
>>> engine.run()
4. show result
>>> x, y = engine.gbest.chromosome
>>> print('max value', fun(engine.gbest.chromosome))
>>> print('x:', x, 'y:', y)
There is a example for PSO.
>>> def fun(vars):
>>> # fitness function
>>> x, y = vars
>>> if 1 <= x <= 2 * np.pi and 1 <= y <= np.pi:
>>> return np.cos(x) + np.sin(x) - x * y
>>> else:
>>> return -2 - 4 * np.pi ** 2 # return a small float number can not reach
>>> if __name__ == '__main__':
>>> engine = PSOEngine(vmax=0.01, bound=[[1, 2 * np.pi]], min_fitness_value=-1, dim=2, fitness_function=fun, steps=100)
>>> engine.run()
>>> x, y = engine.gbest.chromosome
>>> print('max value', fun(engine.gbest.chromosome))
>>> print('x:', x, 'y:', y)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file snowland_algorithm-0.0.7-py3-none-any.whl
.
File metadata
- Download URL: snowland_algorithm-0.0.7-py3-none-any.whl
- Upload date:
- Size: 84.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/3.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e94ee27ab012c51489dcfc72627a4f4ace565810fd90cc142a8ec0ba95959bb2 |
|
MD5 | ae5166be5e14937c145fd86e926e1280 |
|
BLAKE2b-256 | f9886cbccd18ae6b9c5b983bcf9440704c4d03d3a9186671fd7ebb75e004e03e |