A set of helpers to extend snowpark functionality
Project description
snowpark-extensions-py
Snowpark by itself is a powerful library, but still some utility functions can always help.
BTW what about Java
/ Scala
/ SQL
? There is an additional repo where you will have also utility functions and extensions for those technologies.
NOTE: we have been working to integrate some of the snowpark extensions directly into the snowpark-python library. In most cases the APIs will be exactly the same, so there should no changes needed in your code. However there might be breaking changes, so consider that before updating. If any of these breaking changes are affecting you, please enter an issue so we can address it.
Installation
We recommended installing using PYPI
$ pip install snowpark-extensions
note:: If you run this command on MacOS change
pip
bypip3
Usage
just import it at the top of your file and it will automatically extend your snowpark package. For example:
from snowflake.snowpark import Session
import snowpark_extensions
new_session = Session.builder.from_snowsql().appName("app1").getOrCreate()
Currently provided extensions:
Session Extensions
Session was extened to support IPython display. Using session as a value in a cell will display the session info
SessionBuilder extensions
Name | Description |
---|---|
SessionBuilder.from_snowsql | can read the information from the snowsql config file by default at ~/snowsql/config or at a given location |
SessionBuilder.env | reads settings from SNOW_xxx or SNOWSQL_xxx variables |
SessionBuilder.appName | Sets a query tag with the given appName |
SessionBuilder.append_tag | Appends a new tag to the existing query tag |
Available in snowpark-python >= 1.3.0 |
You can the create your session like:
from snowflake.snowpark import Session
import snowpark_extensions
new_session = Session.builder.from_snowsql().appName("app1").create()
from snowflake.snowpark import Session
import snowpark_extensions
new_session = Session.builder.env().appName("app1").create()
NOTE: since 1.8.0 the python connector was updated and we provide support for an unified configuration storage for
snowflake-python-connector
andsnowflake-snowpark-python
with this approach.You can use this connections leveraging
Session.builder.getOrCreate()
orSession.builder.create()
By default, we look for the
connections.toml
file in the location specified in theSNOWFLAKE_HOME
environment variable (default:~/.snowflake
). If this folder does not exist, the Python connector looks for the file in theplatformdirs
location, as follows:
- On Linux:
~/.config/snowflake/
, but follows XDG settings- On Mac:
~/Library/Application Support/snowflake/
- On Windows:
%USERPROFILE%\AppData\Local\snowflake\
The default connection by default is 'default' but it can be controlled with the environment variable:
SNOWFLAKE_DEFAULT_CONNECTION_NAME
.If you dont want to use a file you can set the file contents thru the
SNOWFLAKE_CONNECTIONS
environment variable.Connection file looks like:
[default] account = "myaccount" user = "user1" password = 'xxxxx' role = "user_role" database = "demodb" schema = "public" warehouse = "load_wh" [snowpark] account = "myaccount" user = "user2" password = 'yyyyy' role = "user_role" database = "demodb" schema = "public" warehouse = "load_wh"
The appName
can use to setup a query_tag like APPNAME=tag;execution_id=guid
which can then be used to track job actions with a query like
You can then use a query like: To see all executions from an app or
select *
from table(information_schema.query_history())
whery query_tag like '%APPNAME=tag%'
order by start_time desc;
To see the executions for a particular execution:
select *
from table(information_schema.query_history())
whery query_tag like '%APPNAME=tag;execution_id=guid%'
order by start_time desc;
Column Extensions
Name | Description |
---|---|
DataFrame Extensions
Name | Description |
---|---|
~~returns the list of datatypes in the DataFrame ~~Available in snowpark python >= 1.1.0 | |
DataFrame.map | provides an equivalent for the map function for example df.map(func,input_types=[StringType(),StringType()],output_types=[StringType(),IntegerType()],to_row=True) |
DataFrame.simple_map | if a simple lambda like lambda x: x.col1 + x.col2 is used this functions can be used like df.simple_map(lambda x: x.col1 + x.col2) |
Maps each group of the current DataFrame using a pandas udf and returns the result as a DataFrame.applyInPandas overload is kept to avoid breaking changes. But we recommend using the native apply_in_pandas Available in snowpark-python >= 1.8.0 |
|
DataFrame.replace | extends replace to allow using a regex |
DataFrame.groupBy.pivot | extends the snowpark groupby to add a pivot operator |
DataFrame.stack | This is an operator similar to the unpivot operator |
Examples
map and simple_map
from snowflake.snowpark import Session
from snowflake.snowpark.types import *
import snowpark_extensions
session = Session.builder.from_snowsql().appName("app1").getOrCreate()
data = [('James','Smith','M',30),('Anna','Rose','F',41),('Robert','Williams','M',62)]
columns = ["firstname","lastname","gender","salary"]
df = session.createDataFrame(data=data, schema = columns)
df.show()
--------------------------------------------------
|"FIRSTNAME" |"LASTNAME" |"GENDER" |"SALARY" |
--------------------------------------------------
|James |Smith |M |30 |
|Anna |Rose |F |41 |
|Robert |Williams |M |62 |
--------------------------------------------------
# using map with a lambda, the to_row indicates that the code will pass a row as x to the lambda
# if you have a lambda like lambda x,y,z you can use to_row=False
df2=df.map(lambda x:
(x[0]+","+x[1],x[2],x[3]*2),
output_types=[StringType(),StringType(),IntegerType()],to_row=True)
df2.show()
-----------------------------------
|"C_1" |"C_2" |"C_3" |
-----------------------------------
|James,Smith |M |60 |
|Anna,Rose |F |82 |
|Robert,Williams |M |124 |
-----------------------------------
# for simple lambda
# simple map will just pass the same dataframe to the function
# this approach is faster
df2 = df.simple_map(lambda x: (x[0]+","+x[1],x[2],x[3]*2))
df2.toDF(["name","gender","new_salary"]).show()
---------------------------------------------
|"NAME" |"GENDER" |"NEW_SALARY" |
---------------------------------------------
|James,Smith |M |60 |
|Anna,Rose |F |82 |
|Robert,Williams |M |124 |
---------------------------------------------
replace with support for regex
df = session.createDataFrame([('bat',1,'abc'),('foo',2,'bar'),('bait',3,'xyz')],['A','C','B'])
# already supported replace
df.replace(to_replace=1, value=100).show()
# replace with regex
df.replace(to_replace=r'^ba.$', value='new',regex=True).show()
applyInPandas
from snowflake.snowpark import Session
import snowpark_extensions
session = Session.builder.from_snowsql().getOrCreate()
import pandas as pd
df = session.createDataFrame(
[(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)],
schema=["ID", "V"])
df1 = df.to_pandas()
def normalize(pdf):
V = pdf.V
return pdf.assign(V=(V - V.mean()) / V.std())
df2 = normalize(df1)
# schema can be an string or an StructType
df.group_by("ID").applyInPandas(
normalize, schema="id long, v double").show()
------------------------------
|"ID" |"V" |
------------------------------
|2 |-0.8320502943378437 |
|2 |-0.2773500981126146 |
|2 |1.1094003924504583 |
|1 |-0.7071067811865475 |
|1 |0.7071067811865475 |
------------------------------
NOTE: since snowflake-snowpark-python==1.8.0 applyInPandas is available. This version is kept because:
It supports string schemas
It automatically wraps the column names. In snowpark applyInPandas you need to do:
def func(pdf): pdf.columns = ['columnname1','columnname2'] # rest of the code
Before using your function, to guarantee the proper names are used. This implementation will just use the DF column names. Take in consideration that this still might imply changes as metadata in SF is upper case and lowercase references like df['v'] might fail.
In general it is recommended you use the the snowpark built-in. The extensions only overwrite
applyInPandas
, theapply_in_pandas
refers to the official snowpark implementation
stack
Assuming you have a DataTable like:
+-------+---------+-----+---------+----+
| Name|Analytics| BI|Ingestion| ML|
+-------+---------+-----+---------+----+
| Mickey| null|12000| null|8000|
| Martin| null| 5000| null|null|
| Jerry| null| null| 1000|null|
| Riley| null| null| null|9000|
| Donald| 1000| null| null|null|
| John| null| null| 1000|null|
|Patrick| null| null| null|1000|
| Emily| 8000| null| 3000|null|
| Arya| 10000| null| 2000|null|
+-------+---------+-----+---------+----+
df.select("NAME",df.stack(4,lit('Analytics'), "ANALYTICS", lit('BI'), "BI", lit('Ingestion'), "INGESTION", lit('ML'), "ML").alias("Project", "Cost_To_Project")).filter(col("Cost_To_Project").is_not_null()).orderBy("NAME","Project")
That will return:
'-------------------------------------------
|"NAME" |"PROJECT" |"COST_TO_PROJECT" |
-------------------------------------------
|Arya |Analytics |10000 |
|Arya |Ingestion |2000 |
|Donald |Analytics |1000 |
|Emily |Analytics |8000 |
|Emily |Ingestion |3000 |
|Jerry |Ingestion |1000 |
|John |Ingestion |1000 |
|Martin |BI |5000 |
|Mickey |BI |12000 |
|Mickey |ML |8000 |
|Patrick |ML |1000 |
|Riley |ML |9000 |
-------------------------------------------
DataFrameReader Extensions
Name | Description |
---|---|
DataFrameReader.format | Specified the format of the file to load |
DataFrameReader.load | Loads a dataframe from a file. It will upload the files to an stage if needed |
Example
Functions Extensions
Name | Description |
---|---|
functions.array_sort | sorts the input array in ascending order or descending order. The elements of the input array must be orderable. Null elements will be placed at the end of the returned array. |
functions.to_utc_timestamp | converts a timezone-agnostic timestamp to a timezone-aware timestamp in the provided timezone before rendering that timestamp in UTC |
functions.format_number | formats numbers using the specified number of decimal places |
Available in snowpark-python >= 1.4.0 There is a breaking change as the explode_outer does not need the map argument anymore. |
|
functions.arrays_zip | returns a merged array of arrays |
functions.array_sort | sorts the input array in ascending order. The elements of the input array must be orderable. Null elements will be placed at the end of the returned array. |
functions.array_max | returns the maximon value of the array. |
functions.array_min | returns the minimum value of the array. |
Available in snowpark-python >= 1.4.0 |
|
Available in snowpark-python >= 1.4.0 |
|
Available in snowpark-python >= 1.4.0 |
|
Available in snowpark-python >= 1.4.0 |
|
functions.regexp_split | splits a specific group matched by a regex, it is an extension of split wich supports a limit parameter. |
functions.flatten | creates a single array from an array of arrays |
functions.sort_array | sorts the input array in ascending or descending order according to the natural ordering of the array elements. Null elements will be placed at the beginning of the returned array in ascending order or at the end of the returned array in descending order |
functions.map_values | Returns an unordered array containing the values of the map. |
Available in snowpark-python >= 1.4.0 |
|
Available in snowpark-python >= 1.4.0 |
Examples:
array_sort
from snowflake.snowpark import Session, DataFrame
from snowflake.snowpark.functions import col, lit
from snowflake.snowpark import functions as F
import snowpark_extensions
session = Session.builder.from_snowsql().getOrCreate()
df = session.createDataFrame([([2, 1, None, 3],),([1],),([],)], ['data'])
df.select(F.array_sort(df.data)).show()
------------
|"SORTED" |
------------
|[ |
| 1, |
| 2, |
| 3, |
| null |
|] |
|[ |
| 1 |
|] |
|[] |
------------
explode and explode_outer
Snowflake builtin FLATTEN provide the same functionality, but the explode syntax can be somethings easier. This helper provide the same syntax.
NOTE: explode can be used with arrays and maps/structs. In this helper at least for now you need to specify if you want to process this as array or map. We provide explode and explode outer our you can just use explode with the outer=True flag.
from snowflake.snowpark import Session
import snowpark_extensions
from snowflake.snowpark.functions import explode
session = Session.builder.appName('snowpark_extensions_unittest').from_snowsql().getOrCreate()
schema = StructType([StructField("id", IntegerType()), StructField("an_array", ArrayType()), StructField("a_map", MapType()) ])
sf_df = session.createDataFrame([(1, ["foo", "bar"], {"x": 1.0}), (2, [], {}), (3, None, None)],schema)
# +---+----------+----------+
# | id| an_array| a_map|
# +---+----------+----------+
# | 1|[foo, bar]|{x -> 1.0}|
# | 2| []| {}|
# | 3| null| null|
# +---+----------+----------+
sf_df.select("id", "an_array", explode("an_array")).show()
# +---+----------+---+
# | id| an_array|col|
# +---+----------+---+
# | 1|[foo, bar]|foo|
# | 1|[foo, bar]|bar|
# +---+----------+---+
sf_df.select("id", "an_array", explode_outer("an_array")).show()
# +---+----------+----+
# | id| an_array| COL|
# +---+----------+----+
# | 1|[foo, bar]| foo|
# | 1|[foo, bar]| bar|
# | 2| []| |
# | 3| | |
# +---+----------+----+
For a map use
results = sf_df.select("id", "an_array", explode_outer("an_array",map=True))
# +---+----------+----+-----+
# | id| an_array| KEY| VALUE|
# +---+----------+----+-----+
# | 1|[foo, bar]| x| 1 |
# | 2| []| | |
# | 3| | | |
# +---+----------+----+-----+
regexp_extract
session = Session.builder.from_snowsql().create()
df = session.createDataFrame([('100-200',)], ['str'])
res = df.select(F.regexp_extract('str',r'(\d+)-(\d+)',1).alias('d')).collect()
print(str(res))
# [Row(D='1')]
df = session.createDataFrame([['id_20_30', 10], ['id_40_50', 30]], ['id', 'age'])
df.show()
# --------------------
# |"ID" |"AGE" |
# --------------------
# |id_20_30 |10 |
# |id_40_50 |30 |
# --------------------
df.select(F.regexp_extract('id', r'(\d+)', 1)).show()
# ------------------------------------------------------
# |"COALESCE(REGEXP_SUBSTR(""ID"", '(\\D+)', 1, 1,... |
# ------------------------------------------------------
# |20 |
# |40 |
# ------------------------------------------------------
df.select(F.regexp_extract('id', r'(\d+)_(\d+)', 2)).show()
# ------------------------------------------------------
# |"COALESCE(REGEXP_SUBSTR(""ID"", '(\\D+)_(\\D+)'... |
# ------------------------------------------------------
# |30 |
# |50 |
# ------------------------------------------------------
regexp_split
session = Session.builder.from_snowsql().create()
df = session.createDataFrame([('oneAtwoBthreeC',)], ['s',])
res = df.select(regexp_split(df.s, '[ABC]', 2).alias('s')).collect()
print(str(res))
# [\n "one",\n "twoBthreeC"\n]
utilities
Name | Description |
---|---|
utils.map_to_python_type | maps from DataType to python type |
utils.map_string_type_to_datatype | maps a type by name to a snowpark DataType |
utils.schema_str_to_schema | maps an schema specified as an string to a StructType() |
Jupyter Notebook support
A Jupyter extension has been created to allow integration in Jupyter notebooks. This extension implements a SQL magic, enabling users to run SQL commands within the Jupyter environment. This enhances the functionality of Jupyter notebooks and makes it easier for users to access and analyze their data using SQL. With this extension, data analysis becomes more streamlined, as users can execute SQL commands directly in the same environment where they are working on their notebooks.
To enable this extension just import the snowpark extensions module
import snowpark_extensions
After import a %%sql
magic can be used to run queries. For example:
%%sql
select * from table1
Queries can use also use Jinja2
syntax. For example:
If a previous cell you had something like:
COL1=1
Then on following cells you can do:
%%sql
select * from tables where col={{COL1}}
You can give a name to the sql that you can use later for example:
%%sql tables
select * from information_schema.tables limit 5
and then use that as a normal dataframe:
if tables.count() > 5:
print("There are more that 5 tables")
If you dont specify a name you can still access the last result using __df
.
NOTE: By default only 50 rows are displays. You can customize this limit for example to 100 rows with:
DataFrame.__rows_count = 1000
You can configure Jupyter to run some imports and initialization code at the start of a notebook by creating a file called startup.ipy
in the ~/.ipython/profile_default/startup
directory.
Any code written in this file will be executed when you start a new Jupyter notebook.
An example startup.ipy is provided
Logging Extras
Snowpark Tags
Bart, an Snowflake Evangelist from EMEA created this amazing utility. We are just wrapping it here in the extensions. See his post for a great description https://medium.com/snowflake/simple-tags-in-snowflake-snowpark-for-python-c5910749273
You can use in your snowpark procedures:
def process(session,...):
@Tag()
def foo(...):
....
# or inside your code:
def goo(...):
# only queries from this context will be tagged
with Tag(session, f"drop_in_do_it_too"):
session.sql(f'''DROP TABLE IF EXISTS {to_table}''').collect()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Hashes for snowpark_extensions-0.0.37-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 95a5644d06c7bfe83c29bef821a485430e59ae2e14cbcda637e4fcc8ece36cd0 |
|
MD5 | c2fb1f64ebaa0b59a80ede1c961c4d7f |
|
BLAKE2b-256 | e80dae4f449e47effe7d9c4bae490d4c6e1831af5f84b003de240db3576436aa |