Skip to main content

Simple model output OP additional tools.

Project description

soa4onnx

Simple model Output OP Additional tools for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U soa4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ soa4onnx -h

usage:
    soa4onnx [-h]
    -if INPUT_ONNX_FILE_PATH
    -on OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...]
    -of OUTPUT_ONNX_FILE_PATH
    [-d]
    [-n]

optional arguments:
  -h, --help
        show this help message and exit.

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.

  -on OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...], --output_op_names OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...]
        Output name to be added to the models output OP.
        e.g.
        --output_op_names "onnx::Gather_76" "onnx::Add_89"

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path.

  -d, --do_not_type_check
        Whether not to check that input and output tensors have data types defined.'

  -n, --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from soa4onnx import outputs_add
>>> help(outputs_add)

Help on function outputs_add in module soa4onnx.onnx_model_output_adder:

outputs_add(
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_op_names: Union[List[str], NoneType] = [],
    output_onnx_file_path: Union[str, NoneType] = '',
    do_not_type_check: Union[bool, NoneType] = False,
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        Default: ''

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_op_names: List[str]
        Output name to be added to the models output OP.
        If an output OP name other than one that already exists in the model is
        specified, it is ignored.
        e.g.
        output_op_names = ["onnx::Gather_76", "onnx::Add_89"]

    output_onnx_file_path: Optional[str]
        Output onnx file path. If not specified, no ONNX file is output.
        Default: ''

    do_not_type_check: Optional[bool]
        Whether not to check that input and output tensors have data types defined.\n\
        Default: False

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    outputops_added_graph: onnx.ModelProto
        onnx.ModelProto with output OP added

4. CLI Execution

$ soa4onnx \
--input_onnx_file_path fusionnet_180x320.onnx \
--output_op_names "onnx::Gather_76" "onnx::Add_89" \
--output_onnx_file_path fusionnet_180x320_added.onnx

5. In-script Execution

from soa4onnx import outputs_add

onnx_graph = rename(
    input_onnx_file_path="fusionnet_180x320.onnx",
    output_op_names=["onnx::Gather_76", "onnx::Add_89"],
    output_onnx_file_path="fusionnet_180x320_added.onnx",
)

6. Sample

$ soa4onnx \
--input_onnx_file_path fusionnet_180x320.onnx \
--output_op_names "onnx::Gather_76" "onnx::Add_89" \
--output_onnx_file_path fusionnet_180x320_added.onnx

Before

image image image

After

image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/Operators.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/simple-onnx-processing-tools
  5. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

soa4onnx-1.0.4.tar.gz (5.5 kB view details)

Uploaded Source

Built Distribution

soa4onnx-1.0.4-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file soa4onnx-1.0.4.tar.gz.

File metadata

  • Download URL: soa4onnx-1.0.4.tar.gz
  • Upload date:
  • Size: 5.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for soa4onnx-1.0.4.tar.gz
Algorithm Hash digest
SHA256 d89216719f2dc8983740d7b6103d1dc5a7e61ab4f55670f9434a78c6157f6c7a
MD5 a0aab3e866788e660063c9d3c42f5f15
BLAKE2b-256 b08aebf5729ee6b785b94305ab56e6aa1e4932e6225db4d05f1b5a01f891ac67

See more details on using hashes here.

File details

Details for the file soa4onnx-1.0.4-py3-none-any.whl.

File metadata

  • Download URL: soa4onnx-1.0.4-py3-none-any.whl
  • Upload date:
  • Size: 6.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for soa4onnx-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 2ed6697bf0228d5f0304aa3f2c88df62f32b303952e19bed48df48399e9d3282
MD5 c764c3f2af26a9dc699845328d0647fc
BLAKE2b-256 b6a2e920ebb2aa22ee5d208d653d904051ed1d761aa00102817e48bab09b25c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page