Skip to main content

Awesome socc_plotter created by AdityaNG

Project description

socc_plotter

codecov CI

Semantic Occupancy 3D Plotter. This is the plotter made by the SOccDPT project to create fancy 3D visuals. You can use this for your own AV or Robotics visualization!

demo

Install it from PyPI

pip install socc_plotter

Usage

The socc_plotter works on a callback mechanism since the GUI must be run on the main thread.

from socc_plotter.plotter import Plotter
import time

def callback(plot: Plotter):
    time.sleep(1)
    print("in callback")
    graph_region = plot.graph_region

    points = np.array([[1, 0, 0]])
    colors = np.array([[1, 1, 1]])

    graph_region.setData(pos=points, color=colors)

plotter = Plotter(
    callback=callback,
)
plotter.start()

NuScenes Demo

Start by downloading the NuScenes mini datset

mkdir -p data/nuscenes/
cd data/nuscenes/
wget -c https://www.nuscenes.org/data/v1.0-mini.tgz
tar -xf v1.0-mini.tgz

Install a few dependencies for the demo

pip install nuscenes-devkit==1.1.10
pip install transformers torch torchvision timm accelerate general_navigation

Run the demo

$ python -m socc_plotter
#or
$ socc_plotter

Development

Read the CONTRIBUTING.md file.

Cite

Cite our work if you find it useful

@article{NG2024SOccDPT,
  title={SOccDPT: 3D Semantic Occupancy from Dense Prediction Transformers trained under memory constraints},
  author={NG, Aditya},
  journal={Advances in Artificial Intelligence and Machine Learning},
  volume={ISSN: 2582-9793, Source Id: 21101164612},
  year={2024},
  url={https://www.oajaiml.com/}
}

TODO

  • Demo
    • RGB Frame
    • Depth perception
    • Semantic segmentation
    • NuScenes Calibration
    • NuScenes Vehicle trajectory
    • Semantic Occupancy Grid
  • Ensure demo dependencies are seperate from the module
  • Demo is to prompt the user to install dependencies
  • Demo is to auto download NuScenes and unarchive it
  • Test Cases
  • PiPy deployment

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

socc_plotter-0.1.0.tar.gz (23.6 kB view details)

Uploaded Source

Built Distribution

socc_plotter-0.1.0-py3-none-any.whl (22.3 kB view details)

Uploaded Python 3

File details

Details for the file socc_plotter-0.1.0.tar.gz.

File metadata

  • Download URL: socc_plotter-0.1.0.tar.gz
  • Upload date:
  • Size: 23.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for socc_plotter-0.1.0.tar.gz
Algorithm Hash digest
SHA256 4fe56aecd431d1acb02f178b39a69cf08bd024f7a652f357c55c87033e244847
MD5 c44506012e4f41bd0f73244c8b71e1fa
BLAKE2b-256 9cdde5852b4c7cf3cbc574b78638c015a22edd8480b1078ee282e2f7f62a5bf0

See more details on using hashes here.

File details

Details for the file socc_plotter-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: socc_plotter-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 22.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for socc_plotter-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fa207fdd3be6bf88913ee5d1e60716acd8c40c8277501a777225c10f08ec3916
MD5 8345080a88606264ebe0e8f711c131b6
BLAKE2b-256 6fc326a4fbd7752bf2b67d75085d3f1af2974eb6ced9c902548bef1298f5a56f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page