Skip to main content

Awesome socc_plotter created by AdityaNG

Project description

socc_plotter

codecov CI

Semantic Occupancy 3D Plotter. This is the plotter made by the SOccDPT project to create fancy 3D visuals. You can use this for your own AV or Robotics visualization!

demo

Install it from PyPI

pip install socc_plotter

Usage

The socc_plotter works on a callback mechanism since the GUI must be run on the main thread.

from socc_plotter.plotter import Plotter
import time

def callback(plot: Plotter):
    time.sleep(1)
    print("in callback")
    graph_region = plot.graph_region

    points = np.array([[1, 0, 0]])
    colors = np.array([[1, 1, 1]])

    graph_region.setData(pos=points, color=colors)

plotter = Plotter(
    callback=callback,
)
plotter.start()

NuScenes Demo

Start by downloading the NuScenes mini datset

mkdir -p data/nuscenes/
cd data/nuscenes/
wget -c https://www.nuscenes.org/data/v1.0-mini.tgz
tar -xf v1.0-mini.tgz

Install a few dependencies for the demo

pip install nuscenes-devkit==1.1.10
pip install transformers torch torchvision timm accelerate general_navigation

Run the demo

$ python -m socc_plotter
#or
$ socc_plotter

Development

Read the CONTRIBUTING.md file.

Cite

Cite our work if you find it useful

@article{NG2024SOccDPT,
  title={SOccDPT: 3D Semantic Occupancy from Dense Prediction Transformers trained under memory constraints},
  author={NG, Aditya},
  journal={Advances in Artificial Intelligence and Machine Learning},
  volume={ISSN: 2582-9793, Source Id: 21101164612},
  year={2024},
  url={https://www.oajaiml.com/}
}

TODO

  • Demo
    • RGB Frame
    • Depth perception
    • Semantic segmentation
    • NuScenes Calibration
    • NuScenes Vehicle trajectory
    • Semantic Occupancy Grid
  • Ensure demo dependencies are seperate from the module
  • Demo is to prompt the user to install dependencies
  • Demo is to auto download NuScenes and unarchive it
  • Test Cases
  • PiPy deployment

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

socc_plotter-0.2.0.tar.gz (592.2 kB view details)

Uploaded Source

Built Distribution

socc_plotter-0.2.0-py3-none-any.whl (22.4 kB view details)

Uploaded Python 3

File details

Details for the file socc_plotter-0.2.0.tar.gz.

File metadata

  • Download URL: socc_plotter-0.2.0.tar.gz
  • Upload date:
  • Size: 592.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for socc_plotter-0.2.0.tar.gz
Algorithm Hash digest
SHA256 dd8fd30056a36fdd84116e153c005853f1408ff041eda9d2234981a2af0cfbae
MD5 adbccec0977b6a54c6908cb8e3d253e2
BLAKE2b-256 49e7955e370a423d7be22309596ee9c80fbdfb26e4905652b9a7b950675e65bc

See more details on using hashes here.

File details

Details for the file socc_plotter-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: socc_plotter-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 22.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for socc_plotter-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2fdc153758a8932bd2d1ba07e01dbb7243e56473d5e2920c3e63e91274ac8230
MD5 b100519bdd9fd059ccdcdc751188929a
BLAKE2b-256 b5f87c224439e7e5ed4f85c2ca90f734bf10d509ad98a381602f80e4ec364a75

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page