Skip to main content

Awesome socc_plotter created by AdityaNG

Project description

socc_plotter

codecov CI

Semantic Occupancy 3D Plotter. This is the plotter made by the SOccDPT project to create fancy 3D visuals. You can use this for your own AV or Robotics visualization!

demo

Install it from PyPI

pip install socc_plotter

Usage

The socc_plotter works on a callback mechanism since the GUI must be run on the main thread.

from socc_plotter.plotter import Plotter
import time

def callback(plot: Plotter):
    time.sleep(1)
    print("in callback")
    graph_region = plot.graph_region

    points = np.array([[1, 0, 0]])
    colors = np.array([[1, 1, 1]])

    graph_region.setData(pos=points, color=colors)

plotter = Plotter(
    callback=callback,
)
plotter.start()

NuScenes Demo

Start by downloading the NuScenes mini datset

mkdir -p data/nuscenes/
cd data/nuscenes/
wget -c https://www.nuscenes.org/data/v1.0-mini.tgz
tar -xf v1.0-mini.tgz

Install a few dependencies for the demo

pip install nuscenes-devkit==1.1.10
pip install transformers torch torchvision timm accelerate general_navigation

Run the demo

$ python -m socc_plotter
#or
$ socc_plotter

Development

Read the CONTRIBUTING.md file.

Cite

Cite our work if you find it useful

@article{NG2024SOccDPT,
  title={SOccDPT: 3D Semantic Occupancy from Dense Prediction Transformers trained under memory constraints},
  author={NG, Aditya},
  journal={Advances in Artificial Intelligence and Machine Learning},
  volume={ISSN: 2582-9793, Source Id: 21101164612},
  year={2024},
  url={https://www.oajaiml.com/}
}

TODO

  • Demo
    • RGB Frame
    • Depth perception
    • Semantic segmentation
    • NuScenes Calibration
    • NuScenes Vehicle trajectory
    • Semantic Occupancy Grid
  • Ensure demo dependencies are seperate from the module
  • Demo is to prompt the user to install dependencies
  • Demo is to auto download NuScenes and unarchive it
  • Test Cases
  • PiPy deployment

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

socc_plotter-0.3.0.tar.gz (592.2 kB view details)

Uploaded Source

Built Distribution

socc_plotter-0.3.0-py3-none-any.whl (594.4 kB view details)

Uploaded Python 3

File details

Details for the file socc_plotter-0.3.0.tar.gz.

File metadata

  • Download URL: socc_plotter-0.3.0.tar.gz
  • Upload date:
  • Size: 592.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for socc_plotter-0.3.0.tar.gz
Algorithm Hash digest
SHA256 91579bf421425e28e62130e18f386b3daac229fb32747d6eb376d570a572176d
MD5 436cb6f448b6b5172e616804bcd2cf82
BLAKE2b-256 aaaf61fed94b1ce1be970cdc84cbc7de4b9f5ebf7e906078920902ede4f089f0

See more details on using hashes here.

File details

Details for the file socc_plotter-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: socc_plotter-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 594.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for socc_plotter-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b9257f3727c839191109710d1f26b9dfa620b7f4b49dc6f90b33e32116abfb67
MD5 991532e738f2b767c03bfeb127b05f47
BLAKE2b-256 cd615f944ba3c1c12aa7b6aba0740aa22b91a85c5ac3275f0ca1bd8b910186e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page