Skip to main content

SoccerNet SDK

Project description

Python Pypi Downloads Downloads License

SoccerNet package

conda create -n SoccerNet python pip
conda activate SoccerNet
pip install SoccerNet
# pip install -e https://github.com/SoccerNet/SoccerNet
# pip install -e .

Structure of the data data for each game

  • SoccerNet main folder
    • Leagues (england_epl/europe_uefa-champions-league/france_ligue-1/...)
      • Seasons (2014-2015/2015-2016/2016-2017)
        • Games (format: "{Date} - {Time} - {HomeTeam} {Score} {AwayTeam}")
          • SoccerNet-v2 - Labels / Manual Annotations

            • video.ini: information on start/duration for each half of the game in the HQ video, in second
            • Labels-v2.json: Labels from SoccerNet-v2 - action spotting
            • Labels-cameras.json: Labels from SoccerNet-v1 - camera shot segmentation
          • SoccerNet-v2 - Videos / Automatically Extracted Features

            • 1_224p.mkv: 224p video 1st half - timmed with start/duration from HQ video - resolution 224*398 - 25 fps
            • 2_224p.mkv: 224p video 2nd half - timmed with start/duration from HQ video - resolution 224*398 - 25 fps
            • 1_720p.mkv: 720p video 1st half - timmed with start/duration from HQ video - resolution 720*1280 - 25 fps
            • 2_720p.mkv: 720p video 2nd half - timmed with start/duration from HQ video - resolution 720*1280 - 25 fps
            • 1_ResNET_TF2.npy: ResNET features @2fps for 1st half from SoccerNet-v2, extracted using TF2
            • 2_ResNET_TF2.npy: ResNET features @2fps for 2nd half from SoccerNet-v2, extracted using TF2
            • 1_ResNET_TF2_PCA512.npy: ResNET features @2fps for 1st half from SoccerNet-v2, extracted using TF2, with dimensionality reduced to 512 using PCA
            • 2_ResNET_TF2_PCA512.npy: ResNET features @2fps for 2nd half from SoccerNet-v2, extracted using TF2, with dimensionality reduced to 512 using PCA
            • 1_ResNET_5fps_TF2.npy: ResNET features @5fps for 1st half from SoccerNet-v2, extracted using TF2
            • 2_ResNET_5fps_TF2.npy: ResNET features @5fps for 2nd half from SoccerNet-v2, extracted using TF2
            • 1_ResNET_5fps_TF2_PCA512.npy: ResNET features @5fps for 1st half from SoccerNet-v2, extracted using TF2, with dimensionality reduced to 512 using PCA
            • 2_ResNET_5fps_TF2_PCA512.npy: ResNET features @5fps for 2nd half from SoccerNet-v2, extracted using TF2, with dimensionality reduced to 512 using PCA
            • 1_ResNET_25fps_TF2.npy: ResNET features @25fps for 1st half from SoccerNet-v2, extracted using TF2
            • 2_ResNET_25fps_TF2.npy: ResNET features @25fps for 2nd half from SoccerNet-v2, extracted using TF2
            • 1_player_boundingbox_maskrcnn.json: Player Bounding Boxes @2fps for 1st half, extracted with MaskRCNN
            • 2_player_boundingbox_maskrcnn.json: Player Bounding Boxes @2fps for 2nd half, extracted with MaskRCNN
            • 1_field_calib_ccbv.json: Field Camera Calibration @2fps for 1st half, extracted with CCBV
            • 2_field_calib_ccbv.json: Field Camera Calibration @2fps for 2nd half, extracted with CCBV
            • 1_baidu_soccer_embeddings.npy: Frame Embeddings for 1st half from https://github.com/baidu-research/vidpress-sports
            • 2_baidu_soccer_embeddings.npy: Frame Embeddings for 2nd half from https://github.com/baidu-research/vidpress-sports
          • Legacy from SoccerNet-v1

            • Labels.json: Labels from SoccerNet-v1 - action spotting for goals/cards/subs only
            • 1_C3D.npy: C3D features @2fps for 1st half from SoccerNet-v1
            • 2_C3D.npy: C3D features @2fps for 2nd half from SoccerNet-v1
            • 1_C3D_PCA512.npy: C3D features @2fps for 1st half from SoccerNet-v1, with dimensionality reduced to 512 using PCA
            • 2_C3D_PCA512.npy: C3D features @2fps for 2nd half from SoccerNet-v1, with dimensionality reduced to 512 using PCA
            • 1_I3D.npy: I3D features @2fps for 1st half from SoccerNet-v1
            • 2_I3D.npy: I3D features @2fps for 2nd half from SoccerNet-v1
            • 1_I3D_PCA512.npy: I3D features @2fps for 1st half from SoccerNet-v1, with dimensionality reduced to 512 using PCA
            • 2_I3D_PCA512.npy: I3D features @2fps for 2nd half from SoccerNet-v1, with dimensionality reduced to 512 using PCA
            • 1_ResNET.npy: ResNET features @2fps for 1st half from SoccerNet-v1
            • 2_ResNET.npy: ResNET features @2fps for 2nd half from SoccerNet-v1
            • 1_ResNET_PCA512.npy: ResNET features @2fps for 1st half from SoccerNet-v1, with dimensionality reduced to 512 using PCA
            • 2_ResNET_PCA512.npy: ResNET features @2fps for 2nd half from SoccerNet-v1, with dimensionality reduced to 512 using PCA

How to Download Games (Python)

from SoccerNet.Downloader import SoccerNetDownloader

mySoccerNetDownloader = SoccerNetDownloader(LocalDirectory="path/to/soccernet")

# Download SoccerNet labels
mySoccerNetDownloader.downloadGames(files=["Labels.json"], split=["train", "valid", "test"]) # download labels
mySoccerNetDownloader.downloadGames(files=["Labels-v2.json"], split=["train", "valid", "test"]) # download labels SN v2
mySoccerNetDownloader.downloadGames(files=["Labels-cameras.json"], split=["train", "valid", "test"]) # download labels for camera shot

# Download SoccerNet features
mySoccerNetDownloader.downloadGames(files=["1_ResNET_TF2.npy", "2_ResNET_TF2.npy"], split=["train", "valid", "test"]) # download Features
mySoccerNetDownloader.downloadGames(files=["1_ResNET_TF2_PCA512.npy", "2_ResNET_TF2_PCA512.npy"], split=["train", "valid", "test"]) # download Features reduced with PCA
mySoccerNetDownloader.downloadGames(files=["1_player_boundingbox_maskrcnn.json", "2_player_boundingbox_maskrcnn.json"], split=["train", "valid", "test"]) # download Player Bounding Boxes inferred with MaskRCNN
mySoccerNetDownloader.downloadGames(files=["1_field_calib_ccbv.json", "2_field_calib_ccbv.json"], split=["train", "valid", "test"]) # download Field Calibration inferred with CCBV
mySoccerNetDownloader.downloadGames(files=["1_baidu_soccer_embeddings.npy", "2_baidu_soccer_embeddings.npy"], split=["train", "valid", "test"]) # download Frame Embeddings from https://github.com/baidu-research/vidpress-sports

# Download SoccerNet Challenge set (require password from NDA to download videos)
mySoccerNetDownloader.downloadGames(files=["1_ResNET_TF2.npy", "2_ResNET_TF2.npy"], split=["challenge"]) # download ResNET Features
mySoccerNetDownloader.downloadGames(files=["1_ResNET_TF2_PCA512.npy", "2_ResNET_TF2_PCA512.npy"], split=["challenge"]) # download ResNET Features reduced with PCA
mySoccerNetDownloader.downloadGames(files=["1_224p.mkv", "2_224p.mkv"], split=["challenge"]) # download 224p Videos (require password from NDA)
mySoccerNetDownloader.downloadGames(files=["1_720p.mkv", "2_720p.mkv"], split=["challenge"]) # download 720p Videos (require password from NDA)
mySoccerNetDownloader.downloadGames(files=["1_player_boundingbox_maskrcnn.json", "2_player_boundingbox_maskrcnn.json"], split=["challenge"]) # download Player Bounding Boxes inferred with MaskRCNN 
mySoccerNetDownloader.downloadGames(files=["1_field_calib_ccbv.json", "2_field_calib_ccbv.json"], split=["challenge"]) # download Field Calibration inferred with CCBV 
mySoccerNetDownloader.downloadGames(files=["1_baidu_soccer_embeddings.npy", "2_baidu_soccer_embeddings.npy"], split=["challenge"]) # download Frame Embeddings from https://github.com/baidu-research/vidpress-sports

# Download development kit per task
mySoccerNetDownloader.downloadDataTask(task="calibration-2023", split=["train", "valid", "test", "challenge"])
mySoccerNetDownloader.downloadDataTask(task="caption-2023", split=["train", "valid", "test", "challenge"])
mySoccerNetDownloader.downloadDataTask(task="jersey-2023", split=["train", "test", "challenge"])
mySoccerNetDownloader.downloadDataTask(task="reid-2023", split=["train", "valid", "test", "challenge"])
mySoccerNetDownloader.downloadDataTask(task="spotting-2023", split=["train", "valid", "test", "challenge"])
mySoccerNetDownloader.downloadDataTask(task="spotting-ball-2023", split=["train", "valid", "test", "challenge"], password=<PW_FROM_NDA>)
mySoccerNetDownloader.downloadDataTask(task="tracking-2023", split=["train", "test", "challenge"])

# Download SoccerNet videos (require password from NDA to download videos)
mySoccerNetDownloader.password = "Password for videos? (contact the author)"
mySoccerNetDownloader.downloadGames(files=["1_224p.mkv", "2_224p.mkv"], split=["train", "valid", "test"]) # download 224p Videos
mySoccerNetDownloader.downloadGames(files=["1_720p.mkv", "2_720p.mkv"], split=["train", "valid", "test"]) # download 720p Videos 
mySoccerNetDownloader.downloadRAWVideo(dataset="SoccerNet") # download 720p Videos 
mySoccerNetDownloader.downloadRAWVideo(dataset="SoccerNet-Tracking") # download single camera RAW Videos 

# Download SoccerNet in OSL ActionSpotting format
mySoccerNetDownloader.downloadDataTask(task="spotting-OSL", split=["train", "valid", "test", "challenge"], version="ResNET_PCA512")
mySoccerNetDownloader.downloadDataTask(task="spotting-OSL", split=["train", "valid", "test", "challenge"], version="baidu_soccer_embeddings")
mySoccerNetDownloader.downloadDataTask(task="spotting-OSL", split=["train", "valid", "test", "challenge"], version="224p", password=<PW_FROM_NDA>)

How to read the list Games (Python)

from SoccerNet.utils import getListGames
print(getListGames(split="train")) # return list of games recommended for training
print(getListGames(split="valid")) # return list of games recommended for validation
print(getListGames(split="test")) # return list of games recommended for testing
print(getListGames(split="challenge")) # return list of games recommended for challenge
print(getListGames(split=["train", "valid", "test", "challenge"])) # return list of games for training, validation and testing
print(getListGames(split="v1")) # return list of games from SoccerNetv1 (train/valid/test)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

soccernet-0.1.61.tar.gz (68.9 kB view details)

Uploaded Source

Built Distribution

SoccerNet-0.1.61-py3-none-any.whl (85.9 kB view details)

Uploaded Python 3

File details

Details for the file soccernet-0.1.61.tar.gz.

File metadata

  • Download URL: soccernet-0.1.61.tar.gz
  • Upload date:
  • Size: 68.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for soccernet-0.1.61.tar.gz
Algorithm Hash digest
SHA256 ae45e1fe644c6b6719ee787d1f4504dccb9c01b4bcf338f607d66efa1fe1e888
MD5 969d58d33c16ca58bde6b30d0732e204
BLAKE2b-256 6d8865480c7b94a9edfcc82cf7bf4ea0ebd6d1a7f05fb1777c8af66e53d53dde

See more details on using hashes here.

File details

Details for the file SoccerNet-0.1.61-py3-none-any.whl.

File metadata

  • Download URL: SoccerNet-0.1.61-py3-none-any.whl
  • Upload date:
  • Size: 85.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for SoccerNet-0.1.61-py3-none-any.whl
Algorithm Hash digest
SHA256 53e278e4d44d0f6528712a3c1deadc13d64fa0e9013ce687cd8204aeca57d2aa
MD5 77cf056f817242c748cf337075d97e28
BLAKE2b-256 5a444dd6cccaa2ab74bc1b23d74b6d667b19be4ec96b4272ad6e096b1452762e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page