Skip to main content

A Library for webscraping social media platforms (twitter) and using sentiment analysis on them!

Project description

Social Media Sentiment Analysis

A Library for webscraping social media platforms (twitter) and using sentiment analysis on them!

Installation

pip install social_media_sentiment_analysis

Get started

Get Tweets from twitter and apply sentiment analysis on it:

# Import Library's
import pandas
from Social_Media_Sentiment_Analysis import Social_Media
from Social_Media_Sentiment_Analysis import NLP_Classification as Classify

tweets = Social_Media.get_tweets ('BTC', 'lang:"en"', 128)  # Get Tweets
tweets, twitter_score = Classify.twitter_indicator (tweets) # Apply Sentiment Analysis

Social_Media.save_tweets (tweets, 'tweets')                 # Save Tweets
tweets = pandas.read_csv ('tweets.csv')                     # Read Tweets

# Print the Results
print (tweets)
print ('\n{0}'.format (twitter_score))

Documentaion: https://social-media-sentiment-analysis.readthedocs.io/en/latest/

And that's the end of the Readme, Thanks for Reading!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Social-Media-Sentiment-Analysis-0.1.3.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file Social-Media-Sentiment-Analysis-0.1.3.tar.gz.

File metadata

File hashes

Hashes for Social-Media-Sentiment-Analysis-0.1.3.tar.gz
Algorithm Hash digest
SHA256 ce1cd43a5f2b38aa38c60a17bacb2e380217364a9ee6b192ed011e884c137c89
MD5 9d76f4f4c6160161dbeda8dc6a3000a7
BLAKE2b-256 8475a9f2fc5b905f32a868572110323071384e1eb114465b74a3faf504e16228

See more details on using hashes here.

File details

Details for the file Social_Media_Sentiment_Analysis-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for Social_Media_Sentiment_Analysis-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 103501ab6d55fefa8ae4f05477d7a0952cac47783875d8166cd8249d0850af45
MD5 3b783593c76ae73750c20fb2541183c1
BLAKE2b-256 474486b7de18161aeea78d326fdab314c07fba3626a9b5e1b30d2b7048059cef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page