Skip to main content

Simple model output OP additional tools.

Project description

sod4onnx

Simple model Output OP Deletion tools for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sod4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ sod4onnx -h

usage:
    sod4onnx [-h]
    -if INPUT_ONNX_FILE_PATH
    -on OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...]
    -of OUTPUT_ONNX_FILE_PATH
    [-n]

optional arguments:
  -h, --help
        show this help message and exit.

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
        Input onnx file path.

  -on OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...], --output_op_names OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...]
        Output name to be deleted to the models output OP.
        e.g.
        --output_op_names "output1" "output3"

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path.

  -n, --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

>>> from sod4onnx import outputs_delete
>>> help(outputs_delete)

Help on function outputs_delete in module sod4onnx.onnx_model_output_deleter:

outputs_delete(
    input_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    output_op_names: Union[List[str], NoneType] = [],
    output_onnx_file_path: Union[str, NoneType] = '',
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
        Default: ''

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    output_op_names: List[str]
        Output name to be deleted to the models output OP.
        e.g.
        output_op_names = ["output1", "output3"]

    output_onnx_file_path: Optional[str]
        Output onnx file path. If not specified, no ONNX file is output.
        Default: ''

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    outputops_deleted_graph: onnx.ModelProto
        onnx.ModelProto with output OP deleted

4. CLI Execution

$ sod4onnx \
--input_onnx_file_path movenet_multipose_lightning_192x256_nopost.onnx \
--output_op_names "cast1_output" \
--output_onnx_file_path movenet_multipose_lightning_192x256_nopost_tmp.onnx

5. In-script Execution

from sod4onnx import outputs_delete

onnx_graph = rename(
    input_onnx_file_path="movenet_multipose_lightning_192x256_nopost.onnx",
    output_op_names=["cast1_output"],
    output_onnx_file_path="movenet_multipose_lightning_192x256_nopost_tmp.onnx",
)

6. Sample

$ sod4onnx \
--input_onnx_file_path movenet_multipose_lightning_192x256_nopost.onnx \
--output_op_names "cast1_output" \
--output_onnx_file_path movenet_multipose_lightning_192x256_nopost_tmp.onnx

Before

image

After

image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/Operators.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/simple-onnx-processing-tools
  5. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sod4onnx-1.0.0.tar.gz (5.2 kB view details)

Uploaded Source

Built Distribution

sod4onnx-1.0.0-py3-none-any.whl (5.9 kB view details)

Uploaded Python 3

File details

Details for the file sod4onnx-1.0.0.tar.gz.

File metadata

  • Download URL: sod4onnx-1.0.0.tar.gz
  • Upload date:
  • Size: 5.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for sod4onnx-1.0.0.tar.gz
Algorithm Hash digest
SHA256 b6073ec0f34addc22e6bd672a173837855d3085b7dbbf983d928ad1300154498
MD5 600d10719cefe5120ef435ce3981cfa6
BLAKE2b-256 3d17c2850fd83b4079ce82a459a2d3a86fd3a1e597d0449a42da6bb7984ddf99

See more details on using hashes here.

File details

Details for the file sod4onnx-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: sod4onnx-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 5.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for sod4onnx-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3cfdf98ced67af0d87e13dbfbe673c03d3dd2aaf2a5c5577248fef89c9b0b183
MD5 17f4df62c56f0e00a1a419798f36d48e
BLAKE2b-256 93eefb6011242484fa893c12d0918126eeb223d2d7c83b4d94a6eb725a600de8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page