Simple model output OP additional tools.
Project description
sod4onnx
Simple model Output OP Deletion tools for ONNX.
https://github.com/PINTO0309/simple-onnx-processing-tools
1-1. HostPC
### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc
### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sod4onnx
1-2. Docker
https://github.com/PINTO0309/simple-onnx-processing-tools#docker
2. CLI Usage
$ sod4onnx -h
usage:
sod4onnx [-h]
-if INPUT_ONNX_FILE_PATH
-on OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...]
-of OUTPUT_ONNX_FILE_PATH
[-n]
optional arguments:
-h, --help
show this help message and exit.
-if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
Input onnx file path.
-on OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...], --output_op_names OUTPUT_OP_NAMES [OUTPUT_OP_NAMES ...]
Output name to be deleted to the models output OP.
e.g.
--output_op_names "output1" "output3"
-of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
Output onnx file path.
-n, --non_verbose
Do not show all information logs. Only error logs are displayed.
3. In-script Usage
>>> from sod4onnx import outputs_delete
>>> help(outputs_delete)
Help on function outputs_delete in module sod4onnx.onnx_model_output_deleter:
outputs_delete(
input_onnx_file_path: Union[str, NoneType] = '',
onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
output_op_names: Union[List[str], NoneType] = [],
output_onnx_file_path: Union[str, NoneType] = '',
non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto
Parameters
----------
input_onnx_file_path: Optional[str]
Input onnx file path.
Either input_onnx_file_path or onnx_graph must be specified.
Default: ''
onnx_graph: Optional[onnx.ModelProto]
onnx.ModelProto.
Either input_onnx_file_path or onnx_graph must be specified.
onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.
output_op_names: List[str]
Output name to be deleted to the models output OP.
e.g.
output_op_names = ["output1", "output3"]
output_onnx_file_path: Optional[str]
Output onnx file path. If not specified, no ONNX file is output.
Default: ''
non_verbose: Optional[bool]
Do not show all information logs. Only error logs are displayed.
Default: False
Returns
-------
outputops_deleted_graph: onnx.ModelProto
onnx.ModelProto with output OP deleted
4. CLI Execution
$ sod4onnx \
--input_onnx_file_path movenet_multipose_lightning_192x256_nopost.onnx \
--output_op_names "cast1_output" \
--output_onnx_file_path movenet_multipose_lightning_192x256_nopost_tmp.onnx
5. In-script Execution
from sod4onnx import outputs_delete
onnx_graph = rename(
input_onnx_file_path="movenet_multipose_lightning_192x256_nopost.onnx",
output_op_names=["cast1_output"],
output_onnx_file_path="movenet_multipose_lightning_192x256_nopost_tmp.onnx",
)
6. Sample
$ sod4onnx \
--input_onnx_file_path movenet_multipose_lightning_192x256_nopost.onnx \
--output_op_names "cast1_output" \
--output_onnx_file_path movenet_multipose_lightning_192x256_nopost_tmp.onnx
Before
After
7. Reference
- https://github.com/onnx/onnx/blob/main/docs/Operators.md
- https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
- https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
- https://github.com/PINTO0309/simple-onnx-processing-tools
- https://github.com/PINTO0309/PINTO_model_zoo
8. Issues
https://github.com/PINTO0309/simple-onnx-processing-tools/issues
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sod4onnx-1.0.0.tar.gz
(5.2 kB
view details)
Built Distribution
File details
Details for the file sod4onnx-1.0.0.tar.gz
.
File metadata
- Download URL: sod4onnx-1.0.0.tar.gz
- Upload date:
- Size: 5.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b6073ec0f34addc22e6bd672a173837855d3085b7dbbf983d928ad1300154498 |
|
MD5 | 600d10719cefe5120ef435ce3981cfa6 |
|
BLAKE2b-256 | 3d17c2850fd83b4079ce82a459a2d3a86fd3a1e597d0449a42da6bb7984ddf99 |
File details
Details for the file sod4onnx-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: sod4onnx-1.0.0-py3-none-any.whl
- Upload date:
- Size: 5.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3cfdf98ced67af0d87e13dbfbe673c03d3dd2aaf2a5c5577248fef89c9b0b183 |
|
MD5 | 17f4df62c56f0e00a1a419798f36d48e |
|
BLAKE2b-256 | 93eefb6011242484fa893c12d0918126eeb223d2d7c83b4d94a6eb725a600de8 |