Skip to main content

Soda SQL library & CLI

Project description

Soda logo

Soda SQL

Data testing, monitoring and profiling for SQL accessible data.

License: Apache 2.0 Slack Pypi Soda SQL Build soda-sql

What does Soda SQL do?

Soda SQL allows you to

  • Stop your pipeline when bad data is detected
  • Extract metrics and column profiles through super efficient SQL
  • Full control over metrics and queries through declarative config files

Why Soda SQL?

To protect against silent data issues for the consumers of your data, it's best-practice to profile and test your data:

  • as it lands in your warehouse,
  • after every important data processing step
  • right before consumption.

This way you will prevent delivery of bad data to downstream consumers. You will spend less time firefighting and gain a better reputation.

How does Soda SQL work?

Soda SQL is a Command Line Interface (CLI) and a Python library to measure and test your data using SQL.

As input, Soda SQL uses YAML configuration files that include:

  • SQL connection details
  • What metrics to compute
  • What tests to run on the measurements

Based on those configuration files, Soda SQL will perform scans. A scan performs all measurements and runs all tests associated with one table. Typically a scan is executed after new data has arrived. All soda-sql configuration files can be checked into your version control system as part of your pipeline code.

Want to try Soda SQL? Head over to our 'Quick start tutorial' and get started straight away!

"Show me the metrics"

Let's walk through an example. Simple metrics and tests can be configured in scan YAML configuration files. An example of the contents of such a file:

metrics:
    - row_count
    - missing_count
    - missing_percentage
    - values_count
    - values_percentage
    - valid_count
    - valid_percentage
    - invalid_count
    - invalid_percentage
    - min
    - max
    - avg
    - sum
    - min_length
    - max_length
    - avg_length
    - distinct
    - unique_count
    - duplicate_count
    - uniqueness
    - maxs
    - mins
    - frequent_values
    - histogram
columns:
    ID:
        metrics:
            - distinct
            - duplicate_count
        valid_format: uuid
        tests:
            duplicate_count == 0
    CATEGORY:
        missing_values:
            - N/A
            - No category
        tests:
            missing_percentage < 3
    SIZE:
        tests:
            max - min < 20
sql_metrics:
    - sql: |
        SELECT sum(volume) as total_volume_us
        FROM CUSTOMER_TRANSACTIONS
        WHERE country = 'US'
      tests:
        - total_volume_us > 5000

Based on these configuration files, Soda SQL will scan your data each time new data arrived like this:

$ soda scan ./soda/metrics my_warehouse my_dataset
Soda 1.0 scan for dataset my_dataset on prod my_warehouse
  | SELECT column_name, data_type, is_nullable
  | FROM information_schema.columns
  | WHERE lower(table_name) = 'customers'
  |   AND table_catalog = 'datasource.database'
  |   AND table_schema = 'datasource.schema'
  - 0.256 seconds
Found 4 columns: ID, NAME, CREATE_DATE, COUNTRY
  | SELECT
  |  COUNT(*),
  |  COUNT(CASE WHEN ID IS NULL THEN 1 END),
  |  COUNT(CASE WHEN ID IS NOT NULL AND ID regexp '\b[0-9a-f]{8}\b-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-\b[0-9a-f]{12}\b' THEN 1 END),
  |  MIN(LENGTH(ID)),
  |  AVG(LENGTH(ID)),
  |  MAX(LENGTH(ID)),
  | FROM customers
  - 0.557 seconds
row_count : 23543
missing   : 23
invalid   : 0
min_length: 9
avg_length: 9
max_length: 9

...more queries...

47 measurements computed
23 tests executed
All is good. No tests failed. Scan took 23.307 seconds

The next step is to add Soda SQL scans in your favorite data pipeline orchestration solution like:

  • Airflow
  • AWS Glue
  • Prefect
  • Dagster
  • Fivetran
  • Matillion
  • Luigi

If you like the goals of this project, encourage us! Star sodadata/soda-sql on Github.

Next, head over to our 'Quick start tutorial' and get your first project going!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

soda-sql-core-2.1.9.tar.gz (60.5 kB view details)

Uploaded Source

Built Distribution

soda_sql_core-2.1.9-py3-none-any.whl (88.7 kB view details)

Uploaded Python 3

File details

Details for the file soda-sql-core-2.1.9.tar.gz.

File metadata

  • Download URL: soda-sql-core-2.1.9.tar.gz
  • Upload date:
  • Size: 60.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.12

File hashes

Hashes for soda-sql-core-2.1.9.tar.gz
Algorithm Hash digest
SHA256 ef7dcd33af6e61ea90739813fc2740d77070a2ccf544d4b6fa0f4fed8eed93a9
MD5 7874426c903cf2206e636e7f24df58ef
BLAKE2b-256 a163c23b992734216576d099369633848bae160a0b1ae0094a1a8cf4e5e784e4

See more details on using hashes here.

File details

Details for the file soda_sql_core-2.1.9-py3-none-any.whl.

File metadata

File hashes

Hashes for soda_sql_core-2.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 e25bb3d6b6515de41c9f358fe55a2182790d07815d863fb3fdffaa7f1ecf5651
MD5 66fa77f79c8417cf39702ec1c35e12eb
BLAKE2b-256 9ff818af1d78f9cd6b9852825c4385dd3c37b50357e555b6e7605c11e012456b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page