Soln-ML: Towards Self-Learning AutoML System.
Project description
Soln-ML: Towards Self-Improving AutoML System.
Soln-ML is an AutoML system, which is capable of improving its AutoML power by learning from past experience. It implements many basic components that enables automatic machine learning. Furthermore, this toolkit can be also used to nourish new AutoML algorithms. Soln-ML is developed by DAIM Lab at Peking University. The goal of Soln-ML is to make machine learning easier to apply both in industry and academia.
Currently, Soln-ML is compatible with: Python >= 3.5.
Guiding principles
-
User friendliness. Soln-ML needs few human assistance.
-
Easy extensibility. New ML algorithms are simple to add (as new classes and functions), and existing modules provide ample examples. To be able to easily create new modules allows for total expressiveness, making it suitable for advanced research.
-
Work with Python. No separate models configuration files in a declarative format. Models are described in Python code, which is compact, easier to debug, and allows for ease of extensibility.
Characteristics
-
Soln-ML supports AutoML on large datasets.
-
Soln-ML enables transfer-learning, meta-learning and reinforcement learning techniques to make AutoML with more intelligent behaviors.
Example
Here is a brief example that uses the package.
from solnml.estimators import Classifier
clf = Classifier(dataset_name='iris',
time_limit=150,
output_dir='logs/',
ensemble_method='stacking',
evaluation='holdout',
metric='acc')
clf.fit(train_data)
predictions = clf.predict(test_data)
For more details, please check examples.
Installation
Before installing Soln-ML, please install the necessary library swig.
Soln-ML requires SWIG (>= 3.0, <4.0) as a build dependency, and we suggest you to download & install swig=3.0.12.
Then, you can install Soln-ML itself. There are two ways to install Soln-ML:
Installation via pip
Soln-ML is available on PyPI. You can install it by tying:
pip install soln-ml
Manual installation from the github source
git clone https://github.com/thomas-young-2013/soln-ml.git && cd soln-ml
cat requirements.txt | xargs -n 1 -L 1 pip install
python setup.py install
Tips on Installing Swig
- for Arch Linux User:
On Arch Linux (or any distribution with swig4 as default implementation), you need to confirm that the version of SWIG is in (>= 3.0, <4.0).
We suggest you to install swig=3.0.12..
./configure
make & make install
- for MACOSX User:
Before installing SWIG, you need to install pcre:
cd $pcre_dir
./configure
make & make install
Then add library path of /usr/local/lib
for pcre
:
LD_LIBRARY_PATH=/usr/local/lib:/usr/lib
export LD_LIBRARY_PATH
Finally, install Swig:
cd $swig_dir
./configure
make & make install
Before installing python package pyrfr=0.8.0
, download source code from pypi:
cd $pyrfr_dir
python setup.py install
- for Windows User:
You need to download swigwin, and then install Soln-ML.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file soln-ml-1.0.2.tar.gz
.
File metadata
- Download URL: soln-ml-1.0.2.tar.gz
- Upload date:
- Size: 4.1 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2806fb5a7ff2a5dc91ff6008433491e9a3a4bde2060481c5719ed51c28bade45 |
|
MD5 | 1a8f09a6fd0dcf03500664685cda84d2 |
|
BLAKE2b-256 | e277f2ae8b7f6e0afd4fcc96f675f86190f531a2d80b429684dbff8e17862d39 |
File details
Details for the file soln_ml-1.0.2-py3.5.egg
.
File metadata
- Download URL: soln_ml-1.0.2-py3.5.egg
- Upload date:
- Size: 6.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6ff9e09e8f7b6359c7a288ef176a9c79e25ae0d8ca4e72863c777df9ac67c560 |
|
MD5 | 8205f77ae5702e427cc140021236f20b |
|
BLAKE2b-256 | 446cc4b9ba18bddd6aed4cd7c990be036f7b82500270ca512a4e295f067f03f8 |
File details
Details for the file soln_ml-1.0.2-py3-none-any.whl
.
File metadata
- Download URL: soln_ml-1.0.2-py3-none-any.whl
- Upload date:
- Size: 6.8 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.5.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 89c9ce035ed06f843dfa6b92b2aff7203bf277e7054cdf7ce3a545612d50097b |
|
MD5 | efa451e2248dbf1799a58104c0de4bfb |
|
BLAKE2b-256 | 0ac6afb06c73b1c2fba02f81063fc7127165359798b52ef2ea503aa7351faaf7 |