Skip to main content

This is python implementation for Kohonen Self Organizing map using numpy and tensor

Project description

# SOM
This is python implementation for Kohonen Self Organizing map using numpy and tensor

## Installtion

**Python 3**
`pip install somlib`

## Usage

1. Numpy implementation

```
from somlib import som
s = som.SOM(neurons=(5,5), dimentions=3, n_iter=500, learning_rate=0.1)
s.train(samples) # samples is a n x 3 matrix
print("Cluster centres:", s.weights_)
print("labels:", s.labels_)
result = s.predict(samples)
```

Here 5,5 is the dimention of neurons, 3 is the number of features. samples is numpy array with each sample a 3 dimentional vector

2. Tensor implementation

```
from somlib import som
s = SOM(neurons=(5,5), dimentions=3, n_iter=500, learning_rate=0.1, mode="tensor")
s.train(samples) # samples is a n x 3 matrix
print("Cluster centres:", s.weights_)
print("labels:", s.labels_)
result = s.predict(samples)
```

### Display clusters
To display clusters after training use this

```s.displayClusters(samples)```


![clusters](https://image.ibb.co/hS4uCH/figure_3.png "Clusters")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

somlib-0.0.4.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

somlib-0.0.4-py2-none-any.whl (10.2 kB view details)

Uploaded Python 2

File details

Details for the file somlib-0.0.4.tar.gz.

File metadata

  • Download URL: somlib-0.0.4.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/2.7.12

File hashes

Hashes for somlib-0.0.4.tar.gz
Algorithm Hash digest
SHA256 620ddbf1beb61e25725b66198cb50e59847401e55ea270dc346d030bffe6e117
MD5 54fdc5e776ce81e7e15b68a2bc4b94a1
BLAKE2b-256 28c38d500699b256fda57c6ee2bee42cc34035fa30a71ed8b05e6fc9403fe9f2

See more details on using hashes here.

File details

Details for the file somlib-0.0.4-py2-none-any.whl.

File metadata

  • Download URL: somlib-0.0.4-py2-none-any.whl
  • Upload date:
  • Size: 10.2 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/2.7.12

File hashes

Hashes for somlib-0.0.4-py2-none-any.whl
Algorithm Hash digest
SHA256 3dbeed2556138fc568a38a40a32ad755e4bbd877e09532ff91a5f2efd89d8094
MD5 ae047c625289ed67a8650cdf99e0783f
BLAKE2b-256 c463be68a94599eaa0fb880751b86607dc09cb31a4918d96b60ea47e71833427

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page