Skip to main content

Measures of projection quality

Project description

test codecov github Python version license: GPL v3

API documentation DOI Downloads

sortedness

sortedness is a measure of quality of data transformation, often dimensionality reduction. It is less sensitive to irrelevant distortions and return values in a more meaningful interval than Kruskal stress formula I.
This Python library / code provides a reference implementation for the functions presented here (paper unavailable until publication).

Overview

Local variants return a value for each provided point. The global variant returns a single value for all points. Any local variant can be used as a global measure by taking the mean value.

Local variants: sortedness(X, X_), pwsortedness(X, X_), rsortedness(X, X_).

Global variant: global_sortedness(X, X_).

Python installation

from package through pip

# Set up a virtualenv. 
python3 -m venv venv
source venv/bin/activate

# Install from PyPI
pip install -U sortedness

from source

git clone https://github.com/sortedness/sortedness
cd sortedness
poetry install

Examples

Sortedness

import numpy as np
from numpy.random import permutation
from sklearn.decomposition import PCA

from sortedness import sortedness

# Some synthetic data.
mean = (1, 2)
cov = np.eye(2)
rng = np.random.default_rng(seed=0)
original = rng.multivariate_normal(mean, cov, size=12)
projected2 = PCA(n_components=2).fit_transform(original)
projected1 = PCA(n_components=1).fit_transform(original)
np.random.seed(0)
projectedrnd = permutation(original)

# Print `min`, `mean`, and `max` values.
s = sortedness(original, original)
print(min(s), sum(s) / len(s), max(s))
"""
1.0 1.0 1.0
"""
s = sortedness(original, projected2)
print(min(s), sum(s) / len(s), max(s))
"""
1.0 1.0 1.0
"""
s = sortedness(original, projected1)
print(min(s), sum(s) / len(s), max(s))
"""
0.432937128932 0.7813889452999166 0.944810120534
"""
s = sortedness(original, projectedrnd)
print(min(s), sum(s) / len(s), max(s))
"""
-0.578096068617 -0.06328160775358334 0.396112816715
"""

Pairwise sortedness

import numpy as np
from numpy.random import permutation
from sklearn.decomposition import PCA

from sortedness import pwsortedness

# Some synthetic data.
mean = (1, 2)
cov = np.eye(2)
rng = np.random.default_rng(seed=0)
original = rng.multivariate_normal(mean, cov, size=12)
projected2 = PCA(n_components=2).fit_transform(original)
projected1 = PCA(n_components=1).fit_transform(original)
np.random.seed(0)
projectedrnd = permutation(original)

# Print `min`, `mean`, and `max` values.
s = pwsortedness(original, original)
print(min(s), sum(s) / len(s), max(s))
"""
1.0 1.0 1.0
"""
s = pwsortedness(original, projected2)
print(min(s), sum(s) / len(s), max(s))
"""
1.0 1.0 1.0
"""
s = pwsortedness(original, projected1)
print(min(s), sum(s) / len(s), max(s))
"""
0.730078995423 0.7744573488776667 0.837310352695
"""
s = pwsortedness(original, projectedrnd)
print(min(s), sum(s) / len(s), max(s))
"""
-0.198780473657 -0.0645984203715 0.147224384381
"""

Sortedness

import numpy as np
from numpy.random import permutation
from sklearn.decomposition import PCA

from sortedness import global_pwsortedness

# Some synthetic data.
mean = (1, 2)
cov = np.eye(2)
rng = np.random.default_rng(seed=0)
original = rng.multivariate_normal(mean, cov, size=12)
projected2 = PCA(n_components=2).fit_transform(original)
projected1 = PCA(n_components=1).fit_transform(original)
np.random.seed(0)
projectedrnd = permutation(original)

# Print measurement result and p-value.
s = global_pwsortedness(original, original)
print(list(s))
"""
[1.0, 3.6741408919675163e-93]
"""
s = global_pwsortedness(original, projected2)
print(list(s))
"""
[1.0, 3.6741408919675163e-93]
"""
s = global_pwsortedness(original, projected1)
print(list(s))
"""
[0.7715617715617715, 5.240847664048334e-20]
"""
s = global_pwsortedness(original, projectedrnd)
print(list(s))
"""
[-0.06107226107226107, 0.46847188611226276]
"""

** Copyright (c) 2023. Davi Pereira dos Santos and Tacito Neves**

Grants

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sortedness-0.230706.2.tar.gz (730.0 kB view details)

Uploaded Source

Built Distribution

sortedness-0.230706.2-cp310-cp310-manylinux_2_35_x86_64.whl (745.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.35+ x86-64

File details

Details for the file sortedness-0.230706.2.tar.gz.

File metadata

  • Download URL: sortedness-0.230706.2.tar.gz
  • Upload date:
  • Size: 730.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.10.6 Linux/5.15.0-73-generic

File hashes

Hashes for sortedness-0.230706.2.tar.gz
Algorithm Hash digest
SHA256 b68c2e6545dd786d844d726020485c895bd7713134f824a7a3e5d60f42dfe312
MD5 e8ebb7f795be9dffb632149253463fd3
BLAKE2b-256 24126222a0f36a4ea58fda27f40cb62738d880c92e3427c2acbfcce484508168

See more details on using hashes here.

File details

Details for the file sortedness-0.230706.2-cp310-cp310-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for sortedness-0.230706.2-cp310-cp310-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 69b6c0cf10e2837f531f85c3fae23a8a19a7de156dae4c1a95b21e41647a7007
MD5 855c52a580f764bbc79ce8666a909e57
BLAKE2b-256 c5e88fa8f075209abca153582441073ded240a2cf96afabc81e09e7c723f212a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page