Skip to main content

Measures of projection quality

Project description

test codecov github Python version license: GPL v3

API documentation DOI Downloads PyPI - Downloads

sortedness

sortedness is the level of agreement between two points regarding to how they rank all remaining points in a dataset. This is valid even for points from different spaces, enabling the measurement of the quality of data transformation processes, often dimensionality reduction. It is less sensitive to irrelevant distortions, and return values in a more meaningful interval, than Kruskal stress formula I.
This Python library / code provides a reference implementation for the functions presented here (paper unavailable until publication).

Overview

Local variants return a value for each provided point. The global variant returns a single value for all points. Any local variant can be used as a global measure by taking the mean value.

Local variants: sortedness(X, X_), pwsortedness(X, X_), rsortedness(X, X_).

Global variant: global_sortedness(X, X_).

Python installation

from package through pip

# Set up a virtualenv. 
python3 -m venv venv
source venv/bin/activate

# Install from PyPI
pip install -U sortedness

from source

git clone https://github.com/sortedness/sortedness
cd sortedness
poetry install

Examples

Sortedness

import numpy as np
from numpy.random import permutation
from sklearn.decomposition import PCA

from sortedness import sortedness

# Some synthetic data.
mean = (1, 2)
cov = np.eye(2)
rng = np.random.default_rng(seed=0)
original = rng.multivariate_normal(mean, cov, size=12)
projected2 = PCA(n_components=2).fit_transform(original)
projected1 = PCA(n_components=1).fit_transform(original)
np.random.seed(0)
projectedrnd = permutation(original)

# Print `min`, `mean`, and `max` values.
s = sortedness(original, original)
print(min(s), sum(s) / len(s), max(s))
"""
1.0 1.0 1.0
"""
s = sortedness(original, projected2)
print(min(s), sum(s) / len(s), max(s))
"""
1.0 1.0 1.0
"""
s = sortedness(original, projected1)
print(min(s), sum(s) / len(s), max(s))
"""
0.3934632246658146 0.7565797804350681 0.944810120533741
"""
s = sortedness(original, projectedrnd)
print(min(s), sum(s) / len(s), max(s))
"""
-0.6483054795666044 -0.09539895194976367 0.3970195075915949
"""
# Single point fast calculation.
s = sortedness(original, projectedrnd, 2)
print(s)
"""
0.23107954749077175
"""

Pairwise sortedness

import numpy as np
from numpy.random import permutation
from sklearn.decomposition import PCA

from sortedness import pwsortedness

# Some synthetic data.
mean = (1, 2)
cov = np.eye(2)
rng = np.random.default_rng(seed=0)
original = rng.multivariate_normal(mean, cov, size=12)
projected2 = PCA(n_components=2).fit_transform(original)
projected1 = PCA(n_components=1).fit_transform(original)
np.random.seed(0)
projectedrnd = permutation(original)

# Print `min`, `mean`, and `max` values.
s = pwsortedness(original, original)
print(min(s), sum(s) / len(s), max(s))
"""
1.0 1.0 1.0
"""
s = pwsortedness(original, projected2)
print(min(s), sum(s) / len(s), max(s))
"""
1.0 1.0 1.0
"""
s = pwsortedness(original, projected1)
print(min(s), sum(s) / len(s), max(s))
"""
0.649315577592 0.7534291438324999 0.834601601062
"""
s = pwsortedness(original, projectedrnd)
print(min(s), sum(s) / len(s), max(s))
"""
-0.168611098044 -0.07988253899783333 0.14442446342
"""
# Single point fast calculation.
s = pwsortedness(original, projectedrnd, 2)
print(s)
"""
0.036119718802
"""

Global pairwise sortedness

import numpy as np
from numpy.random import permutation
from sklearn.decomposition import PCA

from sortedness import global_pwsortedness

# Some synthetic data.
mean = (1, 2)
cov = np.eye(2)
rng = np.random.default_rng(seed=0)
original = rng.multivariate_normal(mean, cov, size=12)
projected2 = PCA(n_components=2).fit_transform(original)
projected1 = PCA(n_components=1).fit_transform(original)
np.random.seed(0)
projectedrnd = permutation(original)

# Print measurement result and p-value.
s = global_pwsortedness(original, original)
print(list(s))
"""
[1.0, 3.6741408919675163e-93]
"""
s = global_pwsortedness(original, projected2)
print(list(s))
"""
[1.0, 3.6741408919675163e-93]
"""
s = global_pwsortedness(original, projected1)
print(list(s))
"""
[0.7715617715617715, 5.240847664048334e-20]
"""
s = global_pwsortedness(original, projectedrnd)
print(list(s))
"""
[-0.06107226107226107, 0.46847188611226276]
"""

** Copyright (c) 2023. Davi Pereira dos Santos and Tacito Neves**

TODO

Future work address handling large datasets: approximate sortedness value, and size-insensitive weighting scheme.

Reference

Please use the following reference to cite this work:

@inproceedings {10.2312:eurova.20231093,
booktitle = {EuroVis Workshop on Visual Analytics (EuroVA)},
editor = {Angelini, Marco and El-Assady, Mennatallah},
title = {{Nonparametric Dimensionality Reduction Quality Assessment based on Sortedness of Unrestricted Neighborhood}},
author = {Pereira-Santos, Davi and Neves, Tácito Trindade Araújo Tiburtino and Carvalho, André C. P. L. F. de and Paulovich, Fernando V.},
year = {2023},
publisher = {The Eurographics Association},
ISSN = {2664-4487},
ISBN = {978-3-03868-222-6},
DOI = {10.2312/eurova.20231093}
}

Grants

This work was supported by Wellcome Leap 1kD Program; São Paulo Research Foundation (FAPESP) - grant 2020/09835-1; Canadian Institute for Health Research (CIHR) Canadian Research Chairs (CRC) stipend [award number 1024586]; Canadian Foundation for Innovation (CFI) John R. Evans Leaders Fund (JELF) [grant number 38835]; Dalhousie Medical Research Fund (DMRF) COVID-19 Research Grant [grant number 603082]; and the Canadian Institute for Health Research (CIHR) Project Grant [award number 177968].

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sortedness-2.231025.1.tar.gz (732.7 kB view details)

Uploaded Source

Built Distribution

sortedness-2.231025.1-cp310-cp310-manylinux_2_35_x86_64.whl (745.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.35+ x86-64

File details

Details for the file sortedness-2.231025.1.tar.gz.

File metadata

  • Download URL: sortedness-2.231025.1.tar.gz
  • Upload date:
  • Size: 732.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.6 Linux/6.2.0-35-generic

File hashes

Hashes for sortedness-2.231025.1.tar.gz
Algorithm Hash digest
SHA256 8ef9d79adea954782bf37b6f45c31ba474d30810eb35b5416a373ff857ab429f
MD5 f19a4652db6a8f35088a6a493a10f794
BLAKE2b-256 6c06a5f01417f0b42c02b22ddefd5e26d02acb960b798a981483a2fe221b428f

See more details on using hashes here.

File details

Details for the file sortedness-2.231025.1-cp310-cp310-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for sortedness-2.231025.1-cp310-cp310-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 6681af54b662ccecd6e97df4bee8dd8b8952ed0a9302d24b3a307edbf9a238b4
MD5 c0fd032522859bb59676c89b86d5215c
BLAKE2b-256 8a32dd7d4756749ee197f06922aea0c98b543d7101dfb8770b5194c57bc1781f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page