Skip to main content

SOVA (Structural Order Visualization and Analysis) with python

Project description

SOVApy (Structural Order Viaualization and Analysis with Python)

SOVA can be installed in Windows, MacOS and Linux.
(The package name to be imported is "sovapy".)

Install from PyPI

pip install sovapy

Build and Install sovapy

  1. Clone the SOVA repo
git clone https://github.com/MotokiShiga/sova-cui.git

And move to the downloaded directory

cd sova-cui
  1. To compile and to generate so or dll files, run
    for macos and linux
bash run_install_mac_linux.sh

For windows, use "x64 Native Tools Command Prompt for Visual Studio 2022" to run

install_win.bat
  1. To install SOVA, run
pip install .  

For the usage, see example codes in the directory 'examples'.

Environment

Major packages used for our development

Package Version
Python 3.11 - 3.13
ase 3.22.1
h5py 3.13.0
igraph 0.11.3
matplotlib 3.10.0
networkx 3.1
numpy 2.1.0
PyCifRW 5.0.0
scipy 1.15.2
spglib 2.0.2

The versions of other packages can be found in requirements_py3.11-3.13.txt.

You can make the virtual environment for sovapy by

python -m venv sovapy
source sovapy/bin/activate
pip install --upgrade pip
pip install -r requirements_py3.11-3.13.txt

Acknowledgements

SOVA reuses source codes of the following package:

Examples

0_all_analysis  : All analysis and saving results in a hdf5
1_pdf_xyz       : PDF analysis from xyz file (amorphous SiO2)
2_pdf_cif       : PDF analysis from xyz file (beta-cristobalite)
3_pdf_cfg       : PDF analysis from cfg file generated by RMC++ (amorphous SiO2)
4_coordination  : Coordination number analysis (amorphous SiO2)
5_bond_angle    : Bond angle analysis (amorphous SiO2)
6_tetra_order   : Tetrahedral order analysis (q-value) (amorphous SiO2)
7a_ring          : Ring analysis  (beta-cristobalite)
7b_ring_parallel_comp          : Ring analysis by parallel computation  (beta-cristobalite)
8_cavity        : Cavity analysis (amorphous SiO2)
9_save_result   : Save and load calculated results

Citation

We are preaparing a manuscript for this package. Before the publication, you should cite this url and the following papers. If you have implemented ring analysis, please cite the original papers of ring definitions (Guttman, King, and Primitive) and our paper:
[1] M. Shiga, A. Hirata, Y. Onodera, H. Masai, Ring-originated anisotropy of local structural ordering in amorphous and crystalline silicon dioxide. Commun. Mater. 4, 91 (2023). https://doi.org/10.1038/s43246-023-00416-w

For cavity analysis, please cite
[2] I. Meyer, F. Rhiem, F. Beule, D. Knodt, J. Heinen, R. O. Jones, pyMolDyn: Identification, structure, and properties of cavities/vacancies in condensed matter, J. Comput. Chem., 38, 389–394 (2017). https://doi.org/10.1002/jcc.24697

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

sovapy-0.8.3-cp313-cp313-win_amd64.whl (301.0 kB view details)

Uploaded CPython 3.13 Windows x86-64

sovapy-0.8.3-cp313-cp313-manylinux1_x86_64.whl (318.6 kB view details)

Uploaded CPython 3.13

sovapy-0.8.3-cp313-cp313-macosx_14_0_arm64.whl (283.6 kB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

sovapy-0.8.3-cp312-cp312-win_amd64.whl (301.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

sovapy-0.8.3-cp312-cp312-manylinux1_x86_64.whl (318.5 kB view details)

Uploaded CPython 3.12

sovapy-0.8.3-cp312-cp312-macosx_14_0_arm64.whl (283.5 kB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

sovapy-0.8.3-cp311-cp311-win_amd64.whl (300.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

sovapy-0.8.3-cp311-cp311-manylinux1_x86_64.whl (316.9 kB view details)

Uploaded CPython 3.11

sovapy-0.8.3-cp311-cp311-macosx_14_0_arm64.whl (283.5 kB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

File details

Details for the file sovapy-0.8.3-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: sovapy-0.8.3-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 301.0 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for sovapy-0.8.3-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 3589ecdc00f85e0f02c27ff17d1afdf0fb3e9109e3d62326366050980ec9f168
MD5 22f1e67d8bf6339859f2d834bf07c002
BLAKE2b-256 adc871c6b447832656a43403b9cb26c49318e9d8d9a2b84e42c0a4bb0eaba4f5

See more details on using hashes here.

File details

Details for the file sovapy-0.8.3-cp313-cp313-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for sovapy-0.8.3-cp313-cp313-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 085ed10a4100b7bd056e9b5c8497c6aacab7c677e2dfab2d6fc98eee69efc5a5
MD5 d95501202b3b27fac6d88d8c4eeb003d
BLAKE2b-256 3668c9b865749c6d06cc176c113349fd8aa2ee125a9ac5ce4ffd7114d2b5a1d4

See more details on using hashes here.

File details

Details for the file sovapy-0.8.3-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for sovapy-0.8.3-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 e970867baa6232b2387f1c487faa088f263575ce9a7e995732c7496b8f771da8
MD5 08bd7487194785082e29fcb126b495e7
BLAKE2b-256 404c70bef086b1cb81b384a13e2e97a1c6d8410e6f2b1350e6cec68fe578b29a

See more details on using hashes here.

File details

Details for the file sovapy-0.8.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: sovapy-0.8.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 301.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for sovapy-0.8.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9ca31ad992ea47480d30fce7f26966006b7c3e964c3fcb48b3e077898bed1a6a
MD5 5ca243fe7e8f698fafe75c3b162ecde8
BLAKE2b-256 07d6a6a497525a334202486b02f28bac9e696fe71aa40a0ecf99f5dd8379e30b

See more details on using hashes here.

File details

Details for the file sovapy-0.8.3-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for sovapy-0.8.3-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8dc01d52bc0f2d1a1672f78a99e566098ffab345b14610fb57acadd5d350bd6d
MD5 5f756ea7f9914d32410531856cef8ece
BLAKE2b-256 5936b434c37e9c21a5236dd91d36a6d47b1464560d5e41d6f86ea0f08915a95c

See more details on using hashes here.

File details

Details for the file sovapy-0.8.3-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for sovapy-0.8.3-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 8a90233cefa0a6240a7cb70bfbd614ffe0b1c7d385cb3227fbcef26f187ad677
MD5 8335dd9b850a8778039b85f2eca5c8d1
BLAKE2b-256 8056e151eb46ab84eae7bc5204358b63622e4670871b3751a950cc63ab51cb0d

See more details on using hashes here.

File details

Details for the file sovapy-0.8.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: sovapy-0.8.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 300.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for sovapy-0.8.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c0f9698deeb6808618f2e662868df281f3b08c54201ed5573802871b782714d7
MD5 58284f379c436696074ae57de6ae4293
BLAKE2b-256 6c9a0fc85c72aceb6197221abfa6bf9942b1017334d1cd9df7f444d7e55f75db

See more details on using hashes here.

File details

Details for the file sovapy-0.8.3-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for sovapy-0.8.3-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 693dd83fc6c1b76273a983a348e99a47a8631060fffef22c8e27ef2c71a303a3
MD5 365149c2867d2d2dcac3aa1c7d5f2681
BLAKE2b-256 79bf583697b23f5bb525ed7029b1fad0fc350a810fcfc1ed33cfd9e70b357321

See more details on using hashes here.

File details

Details for the file sovapy-0.8.3-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for sovapy-0.8.3-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 8d13b5c2db758ee8d7f7cf1b9ced8556bb99f78f2fde75246cb0b935f7670826
MD5 5880f6f122a167c7211e90773671f086
BLAKE2b-256 2f15d7ea549bcfe631e659502f3859b5e049a74af9f86c336ee2411f791a7a84

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page