Skip to main content

SOVA (Structural Order Visualization and Analysis) with python

Project description

SOVApy (Structural Order Viaualization and Analysis with Python)

SOVA can be installed in Windows, MacOS and Linux.
(The package name to be imported is "sovapy".)

Install from PyPI

pip install sovapy

Build and Install sovapy

  1. Clone the SOVA repo
git clone https://github.com/MotokiShiga/sova-cui.git

And move to the downloaded directory

cd sova-cui
  1. To compile and to generate so or dll files, run
    for macos and linux
bash run_install_mac_linux.sh

For windows, use "x64 Native Tools Command Prompt for Visual Studio 2022" to run

install_win.bat
  1. To install SOVA, run
pip install .  

For the usage, see example codes in the directory 'examples'.

Environment

Major packages used for our development

Package Version
Python 3.11 - 3.13
ase 3.22.1
h5py 3.13.0
igraph 0.11.3
matplotlib 3.10.0
networkx 3.1
numpy 2.1.0
PyCifRW 5.0.0
scipy 1.15.2
spglib 2.0.2

The versions of other packages can be found in requirements.txt.

You can make the virtual environment for sova by

python -m venv sova-cui
source sova-cui/bin/activate
pip install --upgrade pip
pip install -r requirements.txt

Acknowledgements

SOVA reuses source codes of the following package:

Examples

0_all_analysis  : All analysis and saving results in a hdf5
1_pdf_xyz       : PDF analysis from xyz file (amorphous SiO2)
2_pdf_cif       : PDF analysis from xyz file (beta-cristobalite)
3_pdf_cfg       : PDF analysis from cfg file generated by RMC++ (amorphous SiO2)
4_coordination  : Coordination number analysis (amorphous SiO2)
5_bond_angle    : Bond angle analysis (amorphous SiO2)
6_polyhedra     : Polyhedral symmetry analysis (q-value) (amorphous SiO2)
7_ring          : Ring analysis  (beta-cristobalite)
8_cavity        : Cavity analysis (amorphous SiO2)
9_save_result   : Save and load calculated results

Citation

We are preaparing a manuscript for this package. Before the publication, you should cite this url and the following papers. If you have implemented ring analysis, please cite the original papers of ring definitions (Guttman, King, and Primitive) and our paper:
[1] M. Shiga, A. Hirata, Y. Onodera, H. Masai, Ring-originated anisotropy of local structural ordering in amorphous and crystalline silicon dioxide. Commun. Mater. 4, 91 (2023). https://doi.org/10.1038/s43246-023-00416-w

For cavity analysis, please cite
[2] I. Meyer, F. Rhiem, F. Beule, D. Knodt, J. Heinen, R. O. Jones, pyMolDyn: Identification, structure, and properties of cavities/vacancies in condensed matter, J. Comput. Chem., 38, 389–394 (2017). https://doi.org/10.1002/jcc.24697

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

sovapy-0.7.2-cp313-cp313-win_amd64.whl (295.7 kB view details)

Uploaded CPython 3.13Windows x86-64

sovapy-0.7.2-cp313-cp313-manylinux1_x86_64.whl (314.0 kB view details)

Uploaded CPython 3.13

sovapy-0.7.2-cp313-cp313-macosx_14_0_arm64.whl (278.4 kB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

sovapy-0.7.2-cp312-cp312-win_amd64.whl (295.7 kB view details)

Uploaded CPython 3.12Windows x86-64

sovapy-0.7.2-cp312-cp312-manylinux1_x86_64.whl (313.8 kB view details)

Uploaded CPython 3.12

sovapy-0.7.2-cp312-cp312-macosx_14_0_arm64.whl (278.4 kB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

sovapy-0.7.2-cp311-cp311-win_amd64.whl (295.6 kB view details)

Uploaded CPython 3.11Windows x86-64

sovapy-0.7.2-cp311-cp311-manylinux1_x86_64.whl (312.3 kB view details)

Uploaded CPython 3.11

sovapy-0.7.2-cp311-cp311-macosx_14_0_arm64.whl (278.4 kB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

File details

Details for the file sovapy-0.7.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: sovapy-0.7.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 295.7 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for sovapy-0.7.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 045627ac47622a3af8801f5fabbf3008b336b8d0b206e1b28a99a937d8d649c8
MD5 a133309bee0ff38ba7dd921009ed30e3
BLAKE2b-256 df51c09e992f7cbfa22b38e5bd0e23ca82cf40ed5b6feb6e939dacc884d99532

See more details on using hashes here.

File details

Details for the file sovapy-0.7.2-cp313-cp313-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for sovapy-0.7.2-cp313-cp313-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0988737f054c613b09199958ce01f38335feb824b92bdab5db21248f2fd11796
MD5 8dc0fbd3ac2e1883bade2ce4d14aeac8
BLAKE2b-256 ea6ee1fb8230f90342f6a2ff65b85edb81383133221084be97dbc9fdcda2e70d

See more details on using hashes here.

File details

Details for the file sovapy-0.7.2-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for sovapy-0.7.2-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 6be1d5af7f0c08b8bae3c07c4d83f551e78684466a9ffc2e530ebe969fdae726
MD5 a3a57ce6f4fd0dd071540fcd8b41e486
BLAKE2b-256 e881a93571c2bc143e1d86096b34635f8572e0cce72b798920987cd3099f0a67

See more details on using hashes here.

File details

Details for the file sovapy-0.7.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: sovapy-0.7.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 295.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for sovapy-0.7.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c0c00d315f38f2f2cf0bcdea4e5da2fcb982a978e259f2df2f4ebe5811edb2b2
MD5 1141a57dea7f9b89f8aa01b67bb5fd8e
BLAKE2b-256 ac353c7a06ca5a521764c0f253c562c3d989cbbfe22b55d6fa96680ef2202d12

See more details on using hashes here.

File details

Details for the file sovapy-0.7.2-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for sovapy-0.7.2-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7057d2ee8c1c0500399afe1408e77569bbcf22c79d16ac27b91a23373008a14e
MD5 63bc5f6f133fee7bc6ba616e5d09adf0
BLAKE2b-256 358c5b993bb82759544d7d40be988965644a5b0f7388b0d633f88ab38c571094

See more details on using hashes here.

File details

Details for the file sovapy-0.7.2-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for sovapy-0.7.2-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 dcd531f3c0be48053ae30d1447c6347242352312f31623f710fa82fade717468
MD5 ad3ed962404cc56ff8d2fd5d62aef806
BLAKE2b-256 fd73ce1de4444b7b1550a9509080b05eb5c4e7da33b4a45590d148bc5cd1bc4e

See more details on using hashes here.

File details

Details for the file sovapy-0.7.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: sovapy-0.7.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 295.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for sovapy-0.7.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0a5e2b1ca04c10ab5f9ba3f308e3bb26c2cea1945377a168d2330963a8df2929
MD5 3a038cd6490f6e9dfc215328a6111949
BLAKE2b-256 275f0f00d1fc30bc097f1aca42317dde59b8a66ffe639e5f423b85e5ab2136e2

See more details on using hashes here.

File details

Details for the file sovapy-0.7.2-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for sovapy-0.7.2-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e1c3243364ff04105fc63c746b0a6ee7f1cb8209bf8f3341ef34323b3d480a46
MD5 c3c1603557e4d709b3336db369f702cd
BLAKE2b-256 01fee66205c11cca02ed05991c2005d9eeea3f23360554848f7f3284f00a1587

See more details on using hashes here.

File details

Details for the file sovapy-0.7.2-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for sovapy-0.7.2-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 90d28fa95494dfc5fa21fa88efdb76c13327e664e4e73e0f819d92865a7489af
MD5 9c4b594124a8d75371ec34df4d3e3d94
BLAKE2b-256 8db1496b6ae23fb6393e74bc28ec9000e24ed346e3b64104a1bf08dac2e195ac

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page