Skip to main content

SOVA (Structural Order Visualization and Analysis) with python

Project description

SOVApy (Structural Order Viaualization and Analysis with Python)

SOVA can be installed in Windows, MacOS and Linux.
(The package name to be imported is "sovapy".)

Install from PyPI

pip install sovapy

Build and Install sovapy

  1. Clone the SOVA repo
git clone https://github.com/MotokiShiga/sova-cui.git

And move to the downloaded directory

cd sova-cui
  1. To compile and to generate so or dll files, run
    for macos and linux
bash run_install_mac_linux.sh

For windows, use "x64 Native Tools Command Prompt for Visual Studio 2022" to run

install_win.bat
  1. To install SOVA, run
pip install .  

For the usage, see example codes in the directory 'examples'.

Environment

Major packages used for our development

Package Version
Python 3.11 - 3.13
ase 3.22.1
h5py 3.13.0
igraph 0.11.3
matplotlib 3.10.0
networkx 3.1
numpy 2.1.0
PyCifRW 5.0.0
scipy 1.15.2
spglib 2.0.2

The versions of other packages can be found in requirements.txt.

You can make the virtual environment for sova by

python -m venv sova-cui
source sova-cui/bin/activate
pip install --upgrade pip
pip install -r requirements.txt

Acknowledgements

SOVA reuses source codes of the following package:

Examples

0_all_analysis  : All analysis and saving results in a hdf5
1_pdf_xyz       : PDF analysis from xyz file (amorphous SiO2)
2_pdf_cif       : PDF analysis from xyz file (beta-cristobalite)
3_pdf_cfg       : PDF analysis from cfg file generated by RMC++ (amorphous SiO2)
4_coordination  : Coordination number analysis (amorphous SiO2)
5_bond_angle    : Bond angle analysis (amorphous SiO2)
6_tetra_order   : Tetrahedral order analysis (q-value) (amorphous SiO2)
7_ring          : Ring analysis  (beta-cristobalite)
8_cavity        : Cavity analysis (amorphous SiO2)
9_save_result   : Save and load calculated results

Citation

We are preaparing a manuscript for this package. Before the publication, you should cite this url and the following papers. If you have implemented ring analysis, please cite the original papers of ring definitions (Guttman, King, and Primitive) and our paper:
[1] M. Shiga, A. Hirata, Y. Onodera, H. Masai, Ring-originated anisotropy of local structural ordering in amorphous and crystalline silicon dioxide. Commun. Mater. 4, 91 (2023). https://doi.org/10.1038/s43246-023-00416-w

For cavity analysis, please cite
[2] I. Meyer, F. Rhiem, F. Beule, D. Knodt, J. Heinen, R. O. Jones, pyMolDyn: Identification, structure, and properties of cavities/vacancies in condensed matter, J. Comput. Chem., 38, 389–394 (2017). https://doi.org/10.1002/jcc.24697

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

sovapy-0.8.2-cp313-cp313-win_amd64.whl (301.1 kB view details)

Uploaded CPython 3.13Windows x86-64

sovapy-0.8.2-cp313-cp313-manylinux1_x86_64.whl (318.8 kB view details)

Uploaded CPython 3.13

sovapy-0.8.2-cp313-cp313-macosx_14_0_arm64.whl (283.7 kB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

sovapy-0.8.2-cp312-cp312-win_amd64.whl (301.1 kB view details)

Uploaded CPython 3.12Windows x86-64

sovapy-0.8.2-cp312-cp312-manylinux1_x86_64.whl (318.6 kB view details)

Uploaded CPython 3.12

sovapy-0.8.2-cp312-cp312-macosx_14_0_arm64.whl (283.7 kB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

sovapy-0.8.2-cp311-cp311-win_amd64.whl (301.1 kB view details)

Uploaded CPython 3.11Windows x86-64

sovapy-0.8.2-cp311-cp311-manylinux1_x86_64.whl (317.1 kB view details)

Uploaded CPython 3.11

sovapy-0.8.2-cp311-cp311-macosx_14_0_arm64.whl (283.6 kB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

File details

Details for the file sovapy-0.8.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: sovapy-0.8.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 301.1 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for sovapy-0.8.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 cee58c6cbba582b28e8a4b4f0d3807668e2b4c00124ab372c131992300264c81
MD5 bf7b43413e9e026d423231954f28b7a4
BLAKE2b-256 ca78d7160baeebf5fd1491cc48063481238ae9e3d07457e37847ff30177c4b25

See more details on using hashes here.

File details

Details for the file sovapy-0.8.2-cp313-cp313-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for sovapy-0.8.2-cp313-cp313-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 07cd7fd6699dc84850eeebffde37cef77b57209d627a1caa336848c4501d391e
MD5 e63e03e6424ef9ac414f8e4fd5af182e
BLAKE2b-256 8e38bfd3ad679aa93eda01954cc9dd825edad1e5a544b805348c5d70c5100584

See more details on using hashes here.

File details

Details for the file sovapy-0.8.2-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for sovapy-0.8.2-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 9229547722aac49f7e0ecd72366d2d6baf9f44da8423d769d65b1836945db8a5
MD5 a5909ca44cdfe5d739c714ee127e604c
BLAKE2b-256 e90fa8582dee1240c1a18bce2499de9f5ebf34178079e6ace4b1d5828f7ceb60

See more details on using hashes here.

File details

Details for the file sovapy-0.8.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: sovapy-0.8.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 301.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for sovapy-0.8.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 434e088f8f68bbc659a5cbd7699f0bb4ab94a2cbcdb8a4e9b6299b4b565c7768
MD5 7db06a2cae2be4c87687b61e4ab2e0f9
BLAKE2b-256 1874dfb973d475a060c7aed32829b188545327fef0fcaaa1dfff5364ebdb3a51

See more details on using hashes here.

File details

Details for the file sovapy-0.8.2-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for sovapy-0.8.2-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aec418229cdd65f09c9987e77d99ddb4649722f7f70b27eeaca9824e47521734
MD5 b20adeb26b046a65ca94964adad60da5
BLAKE2b-256 8dcce75fdd106d0884f219bdb38ae5652eb5281254c5de3054b7f48ae46f7be2

See more details on using hashes here.

File details

Details for the file sovapy-0.8.2-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for sovapy-0.8.2-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 01c1fa71e2493fbcd014b8b0eef72cee2cc3a05ade1af39d97fc121d43fd4346
MD5 ea47c7462c222f464c7dd7e4e5c07eca
BLAKE2b-256 82f4f59c2c98c60c7fc9fe99fc696339c663eacd087397a4718221b4a6e92b38

See more details on using hashes here.

File details

Details for the file sovapy-0.8.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: sovapy-0.8.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 301.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for sovapy-0.8.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 00b8e3075fc6715fdfca22a172795c4d3449bb7e14ad5201e0865fb38cf774d2
MD5 2452b9cb5ba2a705313244fa915436d9
BLAKE2b-256 13ebeb034ad1c84d3dba2e6f0f08a8616f87f8d3bc072fd800c4aa4f7fd72444

See more details on using hashes here.

File details

Details for the file sovapy-0.8.2-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for sovapy-0.8.2-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 94bb7ef1d5c94e2e3d80722f3602c41afb335cccc0e0d8b455b90e326faa9e08
MD5 fdeac3079aafc36d8f5cdbae6bfe5eee
BLAKE2b-256 ce0d101f8a1e7d6b050ac81121ecc7d2f16f07ffe0f097b81487e72ca0c7755a

See more details on using hashes here.

File details

Details for the file sovapy-0.8.2-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for sovapy-0.8.2-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 60826b692992cb1686cd01d06bc87c767329e7b978bbf3eee7b903fdf72790fd
MD5 a126f7e5daffb2f4eba2ec3a9e96e322
BLAKE2b-256 00774dc092efb4ec9b8b3e6547fc3876368006ae802ffe9359e8e5c7a5fa665c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page