Skip to main content

Trained Korean Lemmatizer

Project description

한국어 용언 분석기 (Korean Lemmatizer)

한국어의 동사와 형용사의 활용형 (surfacial form) 을 분석합니다. 한국어 용언 분석기는 다음의 기능을 제공합니다.

  1. 입력된 단어를 어간 (stem) 과 어미 (eomi) 으로 분리
  2. 입력된 단어를 원형으로 복원

이 패키지의 구현 원리는 github.io 블로그에 정리하였습니다.

Usage

analyze, lemmatize, conjugate

analyze function returns morphemes of the given predicator word

from soylemma import Lemmatizer

lemmatizer = Lemmatizer()
lemmatizer.analyze('차가우니까')

The return value forms list of tuples because there can be more than one morpheme combination.

[(('차갑', 'Adjective'), ('우니까', 'Eomi'))]

lemmatize function returns lemma of the given predicator word.

lemmatizer.lemmatize('차가우니까')
[('차갑다', 'Adjective')]

If the input word is not predicator such as Noun, it return empty list.

lemmatizer.lemmatize('한국어') # []

conjugate function returns surfacial form. You should put stem and eomi as arguments. It returns all possible surfacial forms for the given stem and eomi.

lemmatizer.conjugate(stem='차갑', eomi='우니까')
lemmatizer.conjugate('예쁘', '었던')
['차가우니까', '차갑우니까']
['예뻤던', '예쁘었던']

update dictionaries and rules

For demonstration, we use dictioanry demo.

어여뻤어 cannot be analyzed because the adjective 어여쁘 does not enrolled in dictionary.

from soylemma import Lemmatizer

lemmatizer = Lemmatizer(dictionary_name='demo')
print(lemmatizer.analyze('어여뻤어')) # []

So, we add the word with tag using add_words function. Do it again. Then you can see the word 어여뻤어 is analyzed.

lemmatizer.add_words('어여쁘', 'Adjective')
lemmatizer.analyze('어여뻤어')
[(('어여쁘', 'Adjective'), ('었어', 'Eomi'))]

However, the word 파랬다 is still not able to be analyzed because the lemmatization rule for surfacial form does not exist.

lemmatizer.analyze('파랬다') # []

So, in this time, we update additional lemmatization rules using add_lemma_rules function.

supplements = {
    '랬': {('랗', '았')}
}

lemmatizer.add_lemma_rules(supplements)

After that, we can see the word 파랬다 is analyzed, and also conjugation of 파랗 + 았다 is available.

lemmatizer.analyze('파랬다')
lemmatizer.conjugate('파랗', '았다')
[(('파랗', 'Adjective'), ('았다', 'Eomi'))]
['파랬다', '파랗았다']

debug on

If you wonder which subwords came up as candidates of (stem, eomi), use debug.

lemmatizer.analyze('파랬다', debug=True)
[DEBUG] word: 파랬다 = 파랗 + 았다, conjugation: 랬 = 랗 + 았
[(('파랗', 'Adjective'), ('았다', 'Eomi'))]

lemmatization rule extractor

You can extract lemmatization rule using extract_rule function.

from soylemma import extract_rule

eojeol = '로드무비였다'
lw = '로드무비이'
lt = 'Adjective'
rw = '었다'
rt = 'Eomi'

extract_rule(eojeol, lw, lt, rw, rt)
('였다', ('이', '었다'))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

soylemma-0.1.0.tar.gz (93.8 kB view details)

Uploaded Source

Built Distributions

soylemma-0.1.0-py3.7.egg (101.9 kB view details)

Uploaded Source

soylemma-0.1.0-py3-none-any.whl (91.8 kB view details)

Uploaded Python 3

File details

Details for the file soylemma-0.1.0.tar.gz.

File metadata

  • Download URL: soylemma-0.1.0.tar.gz
  • Upload date:
  • Size: 93.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for soylemma-0.1.0.tar.gz
Algorithm Hash digest
SHA256 dea434f26ac1f3c9bd960e3b4fa145d50ed10706a424c31638cc79425f49846c
MD5 0df7e3976a871016710db644fff76006
BLAKE2b-256 4c0107da5b88fcc7217fa8dcae840c276e93b22504d8b4bd4ec7791ebc3b6fa2

See more details on using hashes here.

File details

Details for the file soylemma-0.1.0-py3.7.egg.

File metadata

  • Download URL: soylemma-0.1.0-py3.7.egg
  • Upload date:
  • Size: 101.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for soylemma-0.1.0-py3.7.egg
Algorithm Hash digest
SHA256 1a97aab959f624ed30307d9e14ea5a287de455a7ba33bfcfabbe68fbf763c35e
MD5 6a6578f5a4bc4f1fe0cf1dc159eb939e
BLAKE2b-256 2f7a9907596e6965ecf37148f0d5aadaa72a5cc5259534af52c7b846db0ea1df

See more details on using hashes here.

File details

Details for the file soylemma-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: soylemma-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 91.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for soylemma-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 25b4ca2b5f1cbb75e0642a7a5e813045cbd2c01a03d4da17850921386ebf90af
MD5 a915c818fcbf4080cfbfaa0ce838446c
BLAKE2b-256 28df8cd8f8896012cc150f9d1ce103d8e79005b99de4d51eb97c26e4b79eee3c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page