Skip to main content

A set of pytorch implementations for space filling curve using OpenAI Triton

Project description

space-filling-pytorch

A set of GPU-optimized space-filling-curve algorithms (e.g., Hilbert, Z-order) implemented in PyTorch and OpenAI Triton. These algorithms are more than 30 times faster than typical PyTorch-based implementations using kernel fusion. This library is particularly useful for handling point clouds in PyTorch deep learning networks, such as PointTransformerV3.

Usage

import torch
from space_filling_pytorch import hilbert_encode, z_order_encode

batch_size = 2
num_points = 16
xyz = torch.rand(batch_size, num_points, 3, device="cuda") * 2 - 1  # value range must be [-1, 1]

# Hilbert Curve with no transpose (xyz order)
hilbert_encode(xyz, space_size=1024, convention="xyz")
>>> tensor([[ 27008646,  174416382,   99184467,  545318174, 1014259428,  947817691,
             974147274,  465746813,  590435514,  122722004,  897101603,  535449979,
             520237253,  446529249,  197013177,  254906709],
            [551194570,  532868556,  350803712,  922818975,  602215252,  253605249,
             600868136,  557531360,  625006013,  678917039,  957204642,  187281814,
             621257029,  989726818,  615092084,  909388620]], device='cuda:0')

# Hilbert Curve with transpose (zyx order)
hilbert_encode(xyz, space_size=1024, convention="zyx")
>>> tensor([[  27203104,  943467886,   90203125,  276882718,  136738518,  171280879,
              211356654,  466326141,  322000058,   51565506,  933932599,  422793567,
              424300741,  480083681, 1001350699, 1026735333],
            [ 282759114,  433308876,  619239168,  903500185,  333779796, 1037547831,
              332432680,  289095904,  356570557,  687821371,  223340726, 1006162308,
              352821573,  217999680,  346656628,  921071576]], device='cuda:0')

# Z-Order with no transpose (xyz order)
z_order_encode(xyz, space_size=1024, convention="xyz")
>>> tensor([[ 44778821, 226778406, 121328308, 815839782, 539433139, 631067087,
             599439830, 397986105, 848144099,  29398278, 693723698, 344726626,
             335653660, 331813849, 210352353, 182524594],
            [819692704, 349517781, 507224630, 750011964, 841590237, 175939993,
             840220003, 882290987, 935427276, 948966804, 665137179, 203507248,
             923330332, 596839195, 871191299, 758935523]], device='cuda:0')

Installation

To install the library, use the following command:

pip install git+https://github.com/Kitsunetic/space-filling-pytorch.git

Further Improvements

Currently, this library works only with 3D point cloud with float32 dtype because these are all of what I needed. If you need help, such as another input/output format or decoding, please contact me through issues or email.

  • Performance comparison with this library to existing implementations.
  • Support for non-contiguous input tensors.
  • Implement additional algorithms such as Peano, Moore, Gosper Codes.
  • Extent algorithms for more general inputs (not just 3D point cloud, but also 1D, 2D, 4D cases).
  • Kernel fusion of space filling curve code generation / ordering / gathering processes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

space_filling_pytorch-0.0.5.tar.gz (3.8 kB view details)

Uploaded Source

Built Distribution

space_filling_pytorch-0.0.5-py3-none-any.whl (4.0 kB view details)

Uploaded Python 3

File details

Details for the file space_filling_pytorch-0.0.5.tar.gz.

File metadata

  • Download URL: space_filling_pytorch-0.0.5.tar.gz
  • Upload date:
  • Size: 3.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for space_filling_pytorch-0.0.5.tar.gz
Algorithm Hash digest
SHA256 fc234ee228badee24ce58e1fb36456687abbbfa5015f16ce355c89749b59500e
MD5 4cdafad37678d3dc7ddea0cd445907f3
BLAKE2b-256 7c630554b0413f5d9c3c866e1e9e3d60ba39da174c9479c086658947e091b871

See more details on using hashes here.

File details

Details for the file space_filling_pytorch-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for space_filling_pytorch-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 4d797c50fe5340b1c50a708d5fe044360956f74b690bb46072ec87d62ded74dc
MD5 b4888650ce30677962d7b2e5e298d56d
BLAKE2b-256 71b6f323b367f273635eb06d4e086f325819eefc70d24436a6d6cf3e21eaa42e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page